• Title/Summary/Keyword: Annexin a1

Search Result 252, Processing Time 0.023 seconds

The study on cytotoxicity of cytokines produced by the activated human NKT cells on neuroblastoma (활성화된 자연살상 T 세포(NKT)에서 생성된 사이토카인에 의한 신경모세포종의 세포독성에 관한 연구)

  • Cho, Jin Young;Yoon, Young Wook;Yoon, Hyang Suk;Kim, Jong Duk;Choi, Du Young
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.439-445
    • /
    • 2006
  • Purpose : ${\alpha}$-Galactosylceramide (${\alpha}$-GalCer)-stimulated human $V{\alpha}24$ natural killer T (NKT) cells exert antitumor activity against some leukemia in a CD1d dependent and TCR-mediated manner, but could not kill CD1d - negative neuroblastoma (NB) cells. There are few reports about the direct antitumor effect of highly secreted cytokines by these cells on activation. In this study, using a cell-free supernatant (SPN) collected from plate bound hCD1d/${\alpha}$ GalCer tetramers-stimulated NKT cells, we examined whether they could be helpful in the immunotherapeutic treatment of NB. Methods : Cells were cultured in IMDM. The cytokines produced by NKT cells were measured with Cytometric Bead Array (CBA) analysis. Cell viability was evaluated by calcein-AM fluorescence with digital image microscopy scanning (DIMSCAN). The percentage of specific apoptosis was calculated by flow cytometric detection of apoptosis using annexin V and 7-AAD. Results : The activated NKT cells secreted high levels of IL-2, INF-${\gamma}$, TNF-${\alpha}$. The SPN was significantly cytotoxic against four out of eight tested NB cell lines, through mainly apoptosis as evidenced by annexin-V staining and inhibition with the pretreatment of pancaspase blocker. This apoptosis was significantly inhibited when anti-TNF-${\alpha}$ and anti-IFN-${\gamma}$ neutralizing mAbs were used separately and it was completely abolished when the two mAbs were combined. Conclusion : IFN-${\gamma}$ and TNF-${\alpha}$ produced by NKT cells could exert synergistically direct antitumor activity through apoptosis on some NB cell lines.

Isolation of the Gene for Lipocortin-1 Binding Protein Using Yeast Two Hybrid Assay (Yeast Two Hybrid Assay를 이용한 Lipocortin-1 결합 단백질 유전자의 분리)

  • Lee, Koung-Hoa;Kim, Jung-Woo
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • To study the mechanism of lipocortin-1, the 37 kDa protein, one of the annxin superfamily thought to be a second messenger during the Glucocorticoid dependent anti-inflammatory action, the gene for lipocortin-1 binding protein was isolated using the yeast two hybrid assay, the yeast based genetic assay recognizing the protein-protein interaction. The results showed that this gene has a weak homology to the for the human serine proteinase.

  • PDF

Fluorescence Molecular Imaging

  • Choi, Heung-Kook;Ntziachristos, Vasilis;Weissleder, Ralph
    • Proceedings of the KSMRM Conference
    • /
    • 2004.09a
    • /
    • pp.23-32
    • /
    • 2004
  • The chemotherapy sensitive Lewis lung carcinoma (LLC) and chemotherapy resistant Lewis lung carcinoma (CR-LLC) tumors concurrently implanted in mice, and compare these findings with histological macroscopic observations against 3D reconstruction of Fluorescence Molecular Tomography (FMT) preformed in vivo on the same animals. For the 3D image reconstruction we used 32 laser source images, a flat image and 3D surface rendering that confused for 3D Fluorescence Molecular Imaging (FMI). A minimum of ten tissue sections were analyzed per tumor for quantification of the TUNEL-positive cells, cell-associated Cy5.5-Annexin and vessel-associated Alexa Fluor-Lectin. These are useful apoptosis and angiogenesis markers, and they serve as validation experiments to data obtained in vivousing a Cy5.5-Annexin V conjugate injected intravenously in chemotherapy-treated animals carrying the tumors studied histologically. We detected higher levels of apoptosis and corresponding higher levels of Cy5.5 fluorescence in the LLC vs. the CR-LLC tumors according to tissue depth and these findings confirm that in vivo staining with the Cy5.5-Annexing conjugate correlates well with in vitro TUNEL staining and is consistent with the higher apoptotic index expected from the LLC line. There appeared to be 1.38% more apoptosis for LLC than CR-LLC. Consequently there is good correlation between the histology results and in vivo fluorescence-mediated optical imaging. In conclusion the apoptotic images of 3D FMI were validated by microscopic histological image analysis. This is a significant result for the continuous progress of fluorescence 3D imaging research.

  • PDF

Pectic-Oligoshaccharides from Apples Induce Apoptosis and Cell Cycle Arrest in MDA-MB-231 Cells, a Model of Human Breast Cancer

  • Delphi, Ladan;Sepehri, Houri;Khorramizadeh, Mohammad Reza;Mansoori, Fatemeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5265-5271
    • /
    • 2015
  • Background: The effects of plant products on cancer cells has become a field of major importance. Many substancesmay induce apoptosis in anti-cancer treatment. Pectins, a family of complex polysaccharides, and their degradation products may for exasmple exert apoptotic effects in cancer cells. Apples and citrus fruits are the main sources of pectin which can be applied for anti-cancer research. The present study concerned an intact form of pectic-oligoshaccharide named pectic acid (poly galactronic acid). Materials and Methods: Inhibition of cell proliferation assays (MTT), light microscopy, fluorescence microscopy (acridin orange/ethidium bromide), DNA fragmentation tests, cell cycle analysis, annexin PI and Western blotting methods were applied to evaluate apoptosis. Results: The results indicated that pectic acid inhibited cell growth and reduced cell attachment after 24h incubation. This did not appear to be due to necrosis, since morphological features of apoptosis were detected with AO/EB staining and cell cycling was blocked in the sub-G1 phase. Annexin/PI and DNA fragmentation findings indicated that apoptosis frequency increased after 24h incubation with pectic acid. In addition, the data showed pectic acid induced caspase-dependent apoptosis. Conclusions: These data indicate that apple pectic acid without any modification could trigger apoptosis in MDA-MB-231 human breast cancer cells and has potential to improve cancer treatment as a natural product.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Effect of γ-oryzanol on Proliferation and Apoptosis of AGS Human Gastric Carcinoma Cell (감마 오리자놀의 위암세포증식억제 및 세포사멸 유도 효능)

  • Shin, Eun Ju;Chung, Sangwon;Hwang, Jin-Taek
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Gamma (${\gamma}$)-oryzanol is a substance abundant in rice, which is widely cultivated in Asian countries. In this study, we evaluated the effect of ${\gamma}$-oryzanol treatment on proliferation and apoptosis of AGS human gastric carcinoma cells. AGS cells were treated with ${\gamma}$-oryzanol for 72 h in a dose dependent manner. Treatment of ${\gamma}$-oryzanol (50, 100, and $200{\mu}g/mL$) resulted in decreased AGS cell proliferation and increased number of cells in the sub-G1 population. Additionally, apoptotic cells were investigated by annexin V staining and mitochondrial membrane potential assays. Our results indicated that ${\gamma}$-oryzanol treatment increased the number of annexin V-positive cells and depolarized cells. This demonstrated that ${\gamma}$-oryzanol is effective for the induction of apoptosis in AGS cells. We next examined the expression of promising anticancer drug target molecules, including PTEN and HSP90. We found that treatment of ${\gamma}$-oryzanol induced the expression of PTEN in AGS cells. Under the same treatment conditions, ${\gamma}$-oryzanol reduced the expression of HSP90 in AGS cells. These results suggest that ${\gamma}$-oryzanol-induced apoptosis was accompanied by changes in regulation of PTEN and HSP90 in AGS cells. Taken together, ${\gamma}$-oryzanol could be used as a functional substance for the prevention of gastric cancer.

Ginsenoside 20(S)-protopanaxadiol induces cell death in human endometrial cancer cells via apoptosis

  • Jo, Hantae;Jang, Dongmin;Park, Sun Kyu;Lee, Mi-Gi;Cha, Byungsun;Park, Chaewon;Shin, Yong Sub;Park, Hyein;Baek, Jin-myoung;Heo, Hyojin;Brito, Sofia;Hwan, Hyun Gyu;Chae, Sehyun;Yan, Shao-wei;Lee, Changho;Min, Churl K.;Bin, Bum-Ho
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.126-133
    • /
    • 2021
  • Background: 20(S)-protopanaxadiol (20(S)-PPD), one of the aglycone derivatives of major ginsenosides, has been shown to have an anticancer activity toward a variety of cancers. This study was initiated with an attempt to evaluate its anti-cancer activity toward human endometrial cancer by cell and xenograft mouse models. Methods: Human endometrial cancer (HEC)-1A cells were incubated with different 20(S)-PPD concentrations. 20(S)-PPD cytotoxicity was evaluated using MTT assay. Apoptosis was detected using the annexin V binding assay and cell cycle analysis. Cleaved poly (ADP-ribose) polymerase (PARP) and activated caspase-9 were assessed using western blotting. HEC-1A cell tumor xenografts in athymic mice were generated by inoculating HEC-1A cells into the flank of BALB/c female mice and explored to validate 20(S)-PPD anti-endometrial cancer toxicity. Results: 20(S)-PPD inhibited HEC-1A cell proliferation in a dose-dependent manner with an IC50 value of 3.5 μM at 24 h. HEC-1A cells morphologically changed after 20(S)-PPD treatment, bearing resemblance to Taxol-treated cells. Annexin V-positive cell percentages were 0%, 10.8%, and 58.1% in HEC-1A cells when treated with 0, 2.5, and 5 μM of 20(S)-PPD, respectively, for 24 h. 20(S)-PPD subcutaneously injected into the HEC-1A cell xenograft-bearing mice three times a week for 17 days manifested tumor growth inhibition by as much as 18% at a dose of 80 mg/kg, which sharply contrasted to controls that showed an approximately 2.4-fold tumor volume increase. These events paralleled caspase-9 activation and PARP cleavage. Conclusion: 20(S)-PPD inhibits endometrial cancer cell proliferation by inducing cell death via a caspase-mediated apoptosis pathway. Therefore, the 20(S)-PPD-like ginsenosides are endowed with ample structural information that could be utilized to develop other ginsenoside-based anticancer agents.

Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells (CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1015-1021
    • /
    • 2016
  • 5-fluorouracil (5-FU), a pyrimidine analog, is a widely used anticancer drug, which works through irreversible inhibition of thymidylate synthase. In the present study, it was investigated the anti-proliferative effects and molecular mechanisms of 5-FU using Ewing's Sarcoma CHP-100 Cells. The present data indicated that treatment of 5-FU to CHP-100 cells induced a G1 phase arrest of the cell cycle in a time-dependent manner. 5-FU-induced G1 arrest was correlated with the accumulation of the hypophosphorylated form of the retinoblastoma protein (pRB) and association of pRB with the transcription factors E2F-1 and E2F-4. Although 5-FU treatment did affect the levels of cyclin-dependent kinases, the levels of cyclin A and B were markedly down-regulated as compared with the untreated control group. In addition, 5-FU-induced G1 arrest of CHP-100 cells was also associated with the induction of apoptosis, as determined by apoptotic cell morphologies, degradation of poly(ADP-ribose) polymerase and Annexin V staining. Furthermore, 5-FU induced the loss of mitochondrial membrane potential with up-regulated pro-apoptotic Bax expression, down-regulated anti-apoptotic Bcl-2 expression and cytochrome c release from mitochondria to cytosol. Collectively, the data suggest that 5-FU is effective in inducing cell growth reduction and apoptosis, in part, by reducing phosphorylation of pRB and activating mitochondrial dysfunction in CHP-100 cells.

Cytotoxic Lactones from the Pericarps of Litsea japonica

  • Ngo, Quynh-Mai Thi;Cao, Thao Quyen;Woo, Mi Hee;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.23-27
    • /
    • 2019
  • From the pericarps of Litsea japonica (Thunb.) Jussieu, eighteen butanolide derivatives (1 - 18) were evaluated for their cytotoxic activity against HeLa, HL-60, and MCF-7 cells. Compounds 1-9 with 2-alkylidene-3-hydroxy-4-methylbutanolides structure exhibited cytotoxic activities against cancer-cell lines. Among them, compound 8 (litsenolide $D_2$) exhibited the most potent cytotoxicity against the tested cell lines, including HeLa, HL-60, and MCF-7, with $IC_{50}$ values of $17.6{\pm}1.3$, $4.2{\pm}0.2$, and $12.8{\pm}0.0{\mu}M$, respectively. Compound 8 induced apoptosis in a dose-dependent manner. Annexin V/Propidium Iodide (PI) double staining confirmed that 8 effectively induced apoptosis in MCF-7 cells. To the best of our knowledge, we have reported cytotoxic activity of butanolides from L. japonica against these cancer-cell lines for the first time.

Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells (Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발)

  • Lee, Hye Hyeon;Hwang, Won Deok;Jeong, Jin-Woo;Park, Cheol;Han, Min Ho;Hong, Su Hyun;Jeong, Yong Kee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin, an active component originally isolated from the traditional medicine Cordyceps militaris, is a derivative of the nucleoside adenosine, which has been shown to possess a number of pharmacological properties, including antioxidant and anti-inflammatory activities, immunological stimulation, and antitumor effects. This study was conducted on cultured human prostate carcinoma LNCap cells to elucidate the possible mechanisms by which cordycepin exerts its anticancer activity, which, until now, has remained poorly understood. Cordycepin treatment of LNCap cells resulted in dose-dependent inhibition of cell growth and the induction of apoptotic cell death as detected by an MTT assay, cleavage of poly ADP-ribose polymerase, and annexin V-FITC staining. Flow cytometric analysis revealed that cordycepin resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and cyclin A expression in a concentration-dependent manner. Moreover, the incubation of cells with cordycepin caused a striking induction in the expression of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 without affecting the expression of the tumor suppressor p53. It also resulted in a significant increase in the binding of CDK2 and CDC2 to p21. These findings suggest that cordycepin-induced G2/M arrest and apoptosis in human prostate carcinoma cells is mediated through p53-independent upregulation of the CDK inhibitor p21.