The study on cytotoxicity of cytokines produced by the activated human NKT cells on neuroblastoma

활성화된 자연살상 T 세포(NKT)에서 생성된 사이토카인에 의한 신경모세포종의 세포독성에 관한 연구

  • Cho, Jin Young (Department of Pediatrics, School of Medicine, Wonkwang University) ;
  • Yoon, Young Wook (Department of Pediatrics, School of Medicine, Wonkwang University) ;
  • Yoon, Hyang Suk (Department of Pediatrics, School of Medicine, Wonkwang University) ;
  • Kim, Jong Duk (Department of Pediatrics, School of Medicine, Wonkwang University) ;
  • Choi, Du Young (Department of Pediatrics, School of Medicine, Wonkwang University)
  • 조진영 (원광대학교 의과대학 소아과학교실) ;
  • 윤영욱 (원광대학교 의과대학 소아과학교실) ;
  • 윤향석 (원광대학교 의과대학 소아과학교실) ;
  • 김종덕 (원광대학교 의과대학 소아과학교실) ;
  • 최두영 (원광대학교 의과대학 소아과학교실)
  • Received : 2005.11.22
  • Accepted : 2005.12.30
  • Published : 2006.04.15

Abstract

Purpose : ${\alpha}$-Galactosylceramide (${\alpha}$-GalCer)-stimulated human $V{\alpha}24$ natural killer T (NKT) cells exert antitumor activity against some leukemia in a CD1d dependent and TCR-mediated manner, but could not kill CD1d - negative neuroblastoma (NB) cells. There are few reports about the direct antitumor effect of highly secreted cytokines by these cells on activation. In this study, using a cell-free supernatant (SPN) collected from plate bound hCD1d/${\alpha}$ GalCer tetramers-stimulated NKT cells, we examined whether they could be helpful in the immunotherapeutic treatment of NB. Methods : Cells were cultured in IMDM. The cytokines produced by NKT cells were measured with Cytometric Bead Array (CBA) analysis. Cell viability was evaluated by calcein-AM fluorescence with digital image microscopy scanning (DIMSCAN). The percentage of specific apoptosis was calculated by flow cytometric detection of apoptosis using annexin V and 7-AAD. Results : The activated NKT cells secreted high levels of IL-2, INF-${\gamma}$, TNF-${\alpha}$. The SPN was significantly cytotoxic against four out of eight tested NB cell lines, through mainly apoptosis as evidenced by annexin-V staining and inhibition with the pretreatment of pancaspase blocker. This apoptosis was significantly inhibited when anti-TNF-${\alpha}$ and anti-IFN-${\gamma}$ neutralizing mAbs were used separately and it was completely abolished when the two mAbs were combined. Conclusion : IFN-${\gamma}$ and TNF-${\alpha}$ produced by NKT cells could exert synergistically direct antitumor activity through apoptosis on some NB cell lines.

목 적 : ${\alpha}$-Galactosylceramide (GalCer)로 자극한 자연살상 T 세포(NKT)는 CD1d 및 T 세포 수용체(T cell receptor) 의존적으로 일부 백혈병에서 항암효과를 발현하나, CD1d음성인 신경모세포종에서는 세포독성을 유도할 수 없다. 이들 NKT세포의 활성화 시 분비되는 많은 양의 사이토카인의 직접적인 항암효과에 대해서는 소수의 보고가 있다. 본 연구에서는 hCD1d/${\alpha}$-GalCer tetramer로 NKT세포를 자극하여 얻은 상청액(supernatant)을 이용하여 NKT세포에 의한 신경모세포종의 치료적 접근의 가능성을 알아보았다. 방 법 : 신경모세포종 세포 주를 IMDM 배지에 배양하였고, NKT세포에서 분비되는 사이토카인 양은 cytometric bead array (CBA)분석으로 측정하였다. 세포 생존율은 calcein-AM 형광물질을 이용하여 digital image microscopy scanning (DIMSCAN)으로 측정하였고 특이 세포고사(specific apoptosis)는 annexin V and 7-AAD 염색 후 유식세포분석기를 통하여 산출하였다. 결 과 : 활성화된 NKT세포는 많은 양의 IL-2, IL-4, INF-${\gamma}$와 TNF-${\alpha}$을 분비하였다. NKT 자극 후 얻어진 상청액은 8개의 신경모세포종 세포 주 중 4개에서 의미있는 세포독성을 나타냈으며, 그 기전은 annexin-V 염색이나 pancaspase 억제제의 전 처치 실험으로 세포고사을 통하여 유도됨을 알 수 있었다. 그리고 이들 세포고사 유도는 anti-TNF-${\alpha}$, anti-IFN-${\gamma}$ 중화항체의 단독투여 시 현저히 감소하였고 동시투여 시에는 완전하게 억제되었다. 결 론 : NKT 세포의 활성화에 의해 분비된 IFN-${\gamma}$와 TNF${\alpha}$가 일부 신경모세포종 세포 주에서 협동적 세포 독성을 유도하였다.

Keywords

Acknowledgement

Supported by : wonkwang university

References

  1. Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-CD8-${alpha}/{beta}$ T cells demonstrates preferential use of several V${beta}$ genes and an invariant TCR ${alpha}$ chain. J Exp Med 1993;178:1-16. https://doi.org/10.1084/jem.178.1.1
  2. Dellabona P, Padovan E, Casorati G, Brochkhaus M, Lanzavecchia A. An invariant V${alpha}$24+V${beta}$11+ T cell receptor is expressed in all individuals by clonally expanded CD4- CD8- T cells. J Exp Med 1994;180:1171-80 https://doi.org/10.1084/jem.180.3.1171
  3. Spada FM, Koezuka Y, Steven A, Porcelli C. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529-34 https://doi.org/10.1084/jem.188.8.1529
  4. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 2001;167:3114-22 https://doi.org/10.4049/jimmunol.167.6.3114
  5. Joyce S. CD1d and natural T cells : how their properties jump-start the immune system. Cell Mol Life Sci 2001;58: 442-69 https://doi.org/10.1007/PL00000869
  6. Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, et al. Antitumor cytotoxicity mediated by ligand-activated human V${\alpha}$24 NKT cells. Cancer Res 1999;59:5102-5
  7. Denkers EY, Scharton-kerstein T, Barbieri S, Casper P, Sher A. A role for $CD4^+$$NK1.1^+$ T lymphocytes as major histocompatibility complex class II independent helper cells in the generation of $CD8^+$ function against intracellular infections. J Exp Med 1996;184:131-9 https://doi.org/10.1084/jem.184.1.131
  8. Wilson SB, Kent SC, Patton KT, Orban T, Jackson RA, Exley M, et al. Extreme Th1 bias of invariant $V{\alpha}24J{\alpha}$Q T cells in type 1 diabetes. Nature 1998;391:177-81 https://doi.org/10.1038/34419
  9. Seino KI, Fukao K, Muramoto K, Yanagisawa K, Takada Y, Kakuta S, et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA 2001;98:2577-81 https://doi.org/10.1073/pnas.041608298
  10. Ito K, Karasawa M, Kawano T, Akasaka T, Koseki H, Akutsu Y, et al. Involvement of decidual V${\alpha}$14 NKT cells in abortion. Proc Natl Acad Sci USA 2000;97:740-4
  11. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high risk neuroblastoma with intensive chemoradiotherapy, autologus bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 1999;341:1165-73 https://doi.org/10.1056/NEJM199910143411601
  12. Yang OO, Racke FK, Nguyen PT, Gausling R, Severino ME, Horton HF, et al. CD1d on myeloid dendritic cells stimulates cytokine secretion from and cytolytic activity of V alpha 24J alpha Q T cells : a feedback mechanism for immune regulation. J Immunol 2000;165:3756-62 https://doi.org/10.4049/jimmunol.165.7.3756
  13. Wilson SB, Byrne MC. Gene expression in NKT cells : defining a functionally distinct CD1d-restricted T cell subset. Curr Opin Immunol 2001;13:555-61 https://doi.org/10.1016/S0952-7915(00)00258-2
  14. Ponzoni M, Casalaro A, Lanciotti M, Montaldo PG, Cornaglia- Ferraris P. The combination of ${\gamma}$-interferon and tumor necrosis factor causes a rapid and extensive differentiation of human neurblastoma cells. Cancer Res 1992;52:931-9
  15. Condorelli F, Sortino MA, Stella AMG, Canonico PL. Relative Contribution of different receptor subtype in the response of neuroblastoma cells to tumor necrosis factor-?. J Neurochem 2000;75:1172-9 https://doi.org/10.1046/j.1471-4159.2000.0751172.x
  16. Kawano T, Tanaka Y, Shimizu E, Kaneko Y, Kamata N, Sato H, et al. A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Int Immunol 1999; 11:881-7 https://doi.org/10.1093/intimm/11.6.881
  17. Carson RT, Vignali DA. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. Immunol Methods 1999;227:41-52 https://doi.org/10.1016/S0022-1759(99)00069-1
  18. Proffitt RT, Tran JV, Reynolds CP. A fluorescence digital image microscopy system for quantifying relative cell numbers in tissue culture plates. Cytometry 1996;24:204-13 https://doi.org/10.1002/(SICI)1097-0320(19960701)24:3<204::AID-CYTO3>3.0.CO;2-H
  19. Lecoeur H, Ledru E, Prevost MC, Gougeon ML. Strategies for phenotyping apoptotic peripheral human lymphocytes comparing ISNT, annexin-V and 7-AAD cytofluorometric stainning methods. J Immunol Methods 1997;209:111-23 https://doi.org/10.1016/S0022-1759(97)00138-5
  20. Nicol A, Nieda M, Koezuka Y, Porcelli S, Suzuki K, Tadokoro K, et al. Human invariant natural killer cells activated by ${\alpha}$-galactosylceramide have cytotoxic antitumor activity through mechanisms distinct from T cells and natural killer cells. Immunology 2000;99:229-34 https://doi.org/10.1046/j.1365-2567.2000.00952.x
  21. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol 2000;1:515-20 https://doi.org/10.1038/82771
  22. Kitamura H, Iwakabe K, Yahata T, Nishimura SI, Ohta A, Ohmi Y, et al. The natural killer T (NKT) cell ligand ${\alpha}$- galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999;189:1121-7 https://doi.org/10.1084/jem.189.7.1121
  23. Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 2003;17:1068-77 https://doi.org/10.1038/sj.leu.2402943
  24. Takahashi T, Nieda M, Koezuka Y, Nicol A, Porcelli SA, Ishikawa Y, et al. Analysis of human V${alpha}$24+ CD4+ NKT cells activated by ${alpha}$-glycosylceramide-pulsed monocytederived dendritic cells. J Immunol 2000;164:4458-64 https://doi.org/10.4049/jimmunol.164.9.4458
  25. Kayagaki N, Yagita H, Hirai H, Juji T. TRAIL expression by activated human CD4+V24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 2001;97:2067-74 https://doi.org/10.1182/blood.V97.7.2067
  26. Kikuchi A, Nieda M, Schmidt C, Koezuka Y, Ishihara S, Ishikawa Y, et al. In vitro anti-tumour activity of ${\alpha}$- galactosylceramide-stimulated human invariant V${\alpha}24^+$ NKT cells against melanoma. Br J Cancer 2001;85:741-6 https://doi.org/10.1054/bjoc.2001.1973
  27. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, et al. Cutting edge : Cross-talk between cells of the innate immune system : NKT cells rapidly activate NK cells. Immunol 1999;163:4647-50
  28. van der Vliet HJ, Nishi N, Koezuka Y, von Blomberg BM, van den Eertwegh AJ, Porcelli SA, et al. Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 2001;247:61-72 https://doi.org/10.1016/S0022-1759(00)00272-6
  29. Spada FM, Borriello F, Sugita M, Watts GF, Koezuka Y, Porcelli SA. Low expression level but potent antigen presenting function of CD1d on monocyte lineage cells. Eur J Immunol 2000;30:3468-77 https://doi.org/10.1002/1521-4141(2000012)30:12<3468::AID-IMMU3468>3.0.CO;2-C
  30. Kushner BH, Kramer K, Cheung NK. Phase II trial of the anti-G (D2) monoclonal antibody 3F8 and granulocytemacrophage colony-stimulating factor for neuroblastoma. J Clin Oncol 2001;19:4189-94 https://doi.org/10.1200/JCO.2001.19.22.4189
  31. Valteau-Couanet D, Leboulaire C, Maincent K, Tournier M, Hartmann O, Benard J, et al. Dendritic cells for NK/LAK activation : rationale for multicellular immunotherapy in neuroblastoma patients. Blood 2002;100:2554-61 https://doi.org/10.1182/blood.V100.7.2554
  32. Bernassola F, Scheuerpflug C, Herr I, Krammer PH, Debatin KM, Melino G. Induction of apoptosis by IFNγ in human neuroblastoma cell lines through the CD95/CD95L autocrine circuit. Cell Death Differ 1999;6:652-60 https://doi.org/10.1038/sj.cdd.4400537
  33. Lutz W, Fulda S, Jeremias I, Debatin KM, Schwab M. MycN and IFNγ cooperate in apoptosis of human neuroblastoma cells. Oncogene 1998;17:339-46 https://doi.org/10.1038/sj.onc.1200201