• 제목/요약/키워드: Annexin

검색결과 410건 처리시간 0.023초

Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ

  • Kim, Young-Ae;Kim, Mi-Young;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.358-363
    • /
    • 2013
  • In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-${\delta}$ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-${\delta}$ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.

Cytotoxicity of Bupivacaine in Odontoblasts

  • Kim, Hyun-Jeong
    • International Journal of Oral Biology
    • /
    • 제32권2호
    • /
    • pp.45-49
    • /
    • 2007
  • In this study, the cytotoxicity of commonly used local anesthetics was evaluated on odontoblasts which are essential for pulpal homeostasis in vitro. Local anesthetics, such as articaine, bupivacaine, levobupivacaine, lidocaine, mepivacaine, prilocaine, and procaine, were tested on the odontoblast cell line, MDPC-23. The concentration-and time-dependent cytotoxic effects of local anesthetics on odontoblasts were measured by MTT assay. Among local anesthetics treated for 18 h, only bupivacaine significantly showed cell death in a concentration-($LC_{50}=1.2mM$) and time-dependent manner. To confirm cell death induced by bupivacaine, the observation of cell morphology and FACS using Annexin V and propidium iodide (PI) staining were performed. As a result of Annexin V and PI staining, as well as the morphological change, only bupivacaine induced apoptotic cell death on odontoblasts when compared with levobupivacaine and lidocaine. These results suggest that bupivacaine might affect normal pulpal integrity even after uneventful local anesthesia.

Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma

  • Kim, Suk Hee;Kang, Seong Hee;Kang, Bo Sun
    • Nutrition Research and Practice
    • /
    • 제10권4호
    • /
    • pp.393-397
    • /
    • 2016
  • BACKGROUND/OBJECFTIVES: Artemisinin, a natural product isolated from Gaeddongssuk (artemisia annua L.) and its main active derivative, dihydroartemisinin (DHA), have long been used as antimalarial drugs. Recent studies reported that artemisinin is efficacious for curing diseases, including cancers, and for improving the immune system. Many researchers have shown the therapeutic effects of artemisinin on tumors such as breast cancer, liver cancer and kidney cancer, but there is still insufficient data regarding glioblastoma (GBM). Glioblastoma accounts for 12-15% of brain cancer, and the median survival is less than a year, despite medical treatments such as surgery, radiation therapy, and chemotherapy. In this study, we investigated the anti-cancer effects of DHA and transferrin against glioblastoma (glioblastoma multiforme, GBM). MATERIALS/METHODS: This study was performed through in vitro experiments using C6 cells. The toxicity dependence of DHA and transferrin (TF) on time and concentration was analyzed by MTT assay and cell cycle assay. Observations of cellular morphology were recorded with an optical microscope and color digital camera. The anti-cancer mechanism of DHA and TF against GBM were studied by flow cytometry with Annexin V and caspase 3/7. RESULTS: MTT assay revealed that TF enhanced the cytotoxicity of DHA against C6 cells. An Annexin V immune-precipitation assay showed that the percentages of apoptosis of cells treated with TF, DHA alone, DHA in combination with TF, and the control group were $7.15{\pm}4.15%$, $34.3{\pm}5.15%$, $66.42{\pm}5.98%$, and $1.2{\pm}0.15%$, respectively. The results of the Annexin V assay were consistent with those of the MTT assay. DHA induced apoptosis in C6 cells through DNA damage, and TF enhanced the effects of DHA. CONCLUSION: The results of this study demonstrated that DHA, the derivative of the active ingredient in Gaeddongssuk, is effective against GBM, apparently via inhibition of cancer cell proliferation by a pharmacological effect. The role of transferrin as an allosteric activator in the GBM therapeutic efficacy of DHA was also confirmed.

Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

  • Xia, Yanling;Qu, Haomiao;Lu, Binshan;Zhang, Qiang;Li, Heping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.467-472
    • /
    • 2018
  • Objective: Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods: The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). Results: The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). Conclusion: ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

Annexin A2 gene interacting with viral matrix protein to promote bovine ephemeral fever virus release

  • Chen, Lihui;Li, Xingyu;Wang, Hongmei;Hou, Peili;He, Hongbin
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.33.1-33.15
    • /
    • 2020
  • Bovine ephemeral fever virus (BEFV) causes bovine ephemeral fever, which can produce considerable economic damage to the cattle industry. However, there is limited experimental evidence regarding the underlying mechanisms of BEFV. Annexin A2 (AnxA2) is a calcium and lipid-conjugated protein that binds phospholipids and the cytoskeleton in a Ca2+-dependent manner, and it participates in various cellular functions, including vesicular trafficking, organization of membrane domains, and virus proliferation. The role of the AnxA2 gene during virus infection has not yet been reported. In this study, we observed that AnxA2 gene expression was up-regulated in BHK-21 cells infected with the virus. Additionally, overexpression of the AnxA2 gene promoted the release of mature virus particles, whereas BEFV replication was remarkably inhibited after reducing AnxA2 gene expression by using the small interfering RNA (siRNA). For viral proteins, overexpression of the Matrix (M) gene promotes the release of mature virus particles. Moreover, the AnxA2 protein interaction with the M protein of BEFV was confirmed by GST pull-down and co-immunoprecipitation assays. Experimental results indicate that the C-terminal domain (268-334 aa) of AxnA2 contributes to this interaction. An additional mechanistic study showed that AnxA2 protein interacts with M protein and mediates the localization of the M protein at the plasma membrane. Furthermore, the absence of the AnxA2-V domain could attenuate the effect of AnxA2 on BEFV replication. These findings can contribute to elucidating the regulation of BEFV replication and may have implications for antiviral strategy development.

마우스 대식세포에서 설파살라진의 세포사멸 및 세포주기 정체에 미치는 영향 연구 (Sulfasalazine Induces Apoptosis and Cell Cycle Arrest in RAW 264.7 Macrophages)

  • 김성미;박소현;김진경
    • 생명과학회지
    • /
    • 제33권10호
    • /
    • pp.767-775
    • /
    • 2023
  • 설파살라진은 1941년 최초로 합성된 이후, 류마티스 관절염, 궤양성 대장염 및 크론병을 치료하는 데 사용되는 질병 변형 항 류마티스 약물-비 생물제제 (아미노살리실산 유도체)이다. 1950년 미국에서 의약품으로 승인된 이후 다양한 염증성 질환의 치료제로 사용되고 있으나 이 약물의 작용기전은 아직 명확하게 밝혀지지 않고 있다. 본 연구에서는 설파살라진이 염증반응을 조절하는 주요 면역세포인 대식세포의 세포생존, 세포사멸 및 세포주기 진행에 어떠한 영향을 미치는지를 마우스 대식세포인 RAW264.7 세포를 이용하여 조사하였다. 세포생존에 미치는 설파살라진의 영향을 측정한 결과 농도의존적으로 RAW264.7 세포의 생존을 억제하였다. 이러한 세포생존의 억제가 세포사멸에 기인한 것인지를 확인하기 위해 Annexin-V로 염색한 결과 0.25 mM 이상의 농도에서 Annexin-V 양성세포가 유의적으로 증가하였다. 또한 0.25 mM 이상의 농도에서 G0/G1기에서 유의적으로 세포주기 정체를 유도하는 것을 확인할 수 있었다. G0/G1기를 조절하는 주요 단백질의 발현을 확인한 결과 설라살라진의 처리는 RAW264.7 세포에서 CDK의 억제제인 p21과 p27의 단백질 발현을 유의적으로 증가시켜 설라살라진에 의한 G0/G1기의 정체는 p21과 p27에 기인하는 것으로 사료된다. 염증성 궤장염이나 류마티스 관절염과 같은 염증성 질환에서 설라살라진이 대조약으로 빈번하게 사용되어지고 있음에도 불구하고 대식세포에 미치는 영향에 대한 연구가 매우 제한적이어서 본 연구의 결과가 질병치료제로서의 설파살라진의 이용에 기초적인 정보를 제공할 수 있을 것이라 판단된다.

Padina arborescens extract protects high glucose-induced apoptosis in pancreatic ${\beta}$ cells by reducing oxidative stress

  • Park, Mi Hwa;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.494-500
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated whether Padina arborescens extract (PAE) protects INS-1 pancreatic ${\beta}$ cells against glucotoxicity-induced apoptosis. MATERIALS/METHODS: Assays, including cell viability, lipid peroxidation, generation of intracellular ROS, NO production, antioxidant enzyme activity and insulin secretion, were conducted. The expressions of Bax, Bcl-2, and caspase-3 proteins in INS-1 cells were evaluated by western blot analysis, and apoptosis/necrosis induced by high glucose was determined by analysis of FITC-Annexin V/PI staining. RESULTS: Treatment with high concentrations of glucose induced INS-1 cell death, but PAE at concentrations of 25, 50 or $100{\mu}g/ml$ significantly increased cell viability. The treatment with PAE dose dependently reduced the lipid peroxidation and increased the activities of antioxidant enzymes reduced by 30 mM glucose, while intracellular ROS levels increased under conditions of 30 mM glucose. PAE treatment improved the secretory responsiveness following stimulation with glucose. The results also demonstrated that glucotoxicity-induced apoptosis is associated with modulation of the Bax/Bcl-2 ratio. When INS-1 cells were stained with Annexin V/PI, we found that PAE reduced apoptosis by glucotoxicity. CONCLUSIONS: In conclusion, the present study indicates that PAE protects against high glucose-induced apoptosis in pancreatic ${\beta}$ cells by reducing oxidative stress.

췌장암 세포주 MIA PaCa-2에서 황백 물 추출물에 의한 Apoptosis 유도 및 작용기전 (Apoptotic Effect of Phellodendri Cortex Water Extract on MIA PaCa-2 Cells)

  • 이인영;정황산;원진희
    • 동의생리병리학회지
    • /
    • 제27권2호
    • /
    • pp.202-211
    • /
    • 2013
  • The purpose of this study is to investigate the apoptotic effect of Phellodendri Cortex water extract (PCWE) on pancreatic cancer cells and to find out the regulating mechanisms. Human-derived pancreatic cancer cell line, MIA PaCa-2 cells were treated by PCWE with various concentrations and the cytotoxicity was determined by MTT assay. The activation of Annexin V, DNA fragmentation, cell cycle arrest and caspase activation were observed to investigate the role of PCWE in pancreatic cancer cells. Also, to find out the regulating mechanisms, we examined the ROS production. The treatment of PCWE induced the cell death in both concentration and time dependent manner. The treatment of PCWE also increased the expression of Annexin V, DNA fragmentation, cell cycle arrest, and cleavage of caspase, which means cell-death PCWE induced was apoptosis but not necrosis. The ROS production was increased by PCWE treatment and the blockade of ROS inhibited the PCWE-induced cell death. These results could suggest that PCWE induced apoptosis via ROS release in pancreatic cancer cell.