• 제목/요약/키워드: Annealing of amorphous

검색결과 571건 처리시간 0.031초

기판의 종류에 따른 SnO2 박막의 전기적인 특성 연구 (Study on the Electrical Characteristics of SnO2 on p-Type and n-Type Si Substrates)

  • 오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.9-14
    • /
    • 2017
  • $ISnO_2$ thin films were prepared on p-type and n-type Si substrates to research the interface characteristics between $SnO_2$ and substrate. After the annealing processes, the amorphous structure was formed at the interface to make a Schottky contact. The O 1s spectra showed the bond of 530.4 eV as an amorphous structure, and the Schottky contact. The analysis by the deconvoluted spectra was observed the drastic variation of oxygen vacancies at the amorphous structure because of the depletion layer is directly related to the oxygen vacancy. $SnO_2$ thin film changed the electrical properties depending on the characteristics of substrates. It was confirmed that it is useful to observe the Schottky contact's properties by complementary using the XPS analysis and I-V measurement.

  • PDF

열처리 온도가 SrWO4:Sm3+ 박막의 구조, 표면, 발광 특성에 미치는 효과 (Effects of Annealing Temperature on the Structural, Morphological, and Luminescent Properties of SrWO4:Sm3+ Thin Films)

  • 조신호
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.582-587
    • /
    • 2023
  • The effects of the annealing temperature on the structural, morphological, and luminescent properties of SrWO4:Sm3+ thin films grown on quartz substrates by radio-frequency magnetron sputtering were investigated. The thin films were annealed at various annealing temperatures for 20 min in a rapid thermal annealer after growing the thin films. The experimental results showed that the annealing temperature has a significant effect on the properties of the SrWO4:Sm3+ thin films. The crystal structure of the as-grown SrWO4:Sm3+ thin films was transformed from amorphous to crystalline after annealing at 800℃. The preferred orientation along (112) plane and a significant increase in average grain size by 820 nm were observed with increasing the annealing temperature. The average optical transmittance in the wavelength range of 500~1,100 nm was decreased from 72.0% at 800℃ to 44.2% at an annealing temperature of 1,000℃, where the highest value in the photoluminescence intensity was obtained. In addition to the red-shift of absorption edge, a higher annealing temperature caused the optical band gap energy of the SrWO4:Sm3+ thin films to fall rapidly. These results suggest that the structural, morphological, and luminescent properties of SrWO4:Sm3+ thin films can be controlled by varying annealing temperature.

열처리 온도에 따른 Zn2SnO4 박막의 특성 (Effect of Annealing Temperatures on the Properties of Zn2SnO4 Thin Film)

  • 신종언;조신호
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.74-78
    • /
    • 2019
  • $Zn_2SnO_4$ thin films were deposited on quartzs substrates by using radio-frequency magnetron sputtering system. Thermal treatments at various temperatures were performed to evaluate the effect of annealing temperatures on the properties of $Zn_2SnO_4$ thin films. Surface morphologies were examined by using field emission-scanning electron microscopy and showed that sizes of grains were slightly increased and grain boundaries were clear with increasing annealing temperatures. The deposited $Zn_2SnO_4$ thin films on quartzs substrates were amorphous structures and no distinguishable crystallographic changes were observed with variations of annealing temperatures. The optical transmittance was improved with increasing annealing temperatures and was over 90% in the wavelength region between 350 and 1100 nm at the annealing temperature of $600^{\circ}C$. The optical energy bandgaps, which derived from the absorbance of $Zn_2SnO_4$ thin films, were increased from 3.34 eV to 3.43 eV at the annealing temperatures of $450^{\circ}C$ and $600^{\circ}C$, respectively. As the annealing temperature was increased, the electron concentrations were decreased. The electron mobility was decreased and resistivity was increased with increasing annealing temperatures with exception of $450^{\circ}C$. These results indicate that heat treatments at higher annealing temperatures improve the optical and electrical properties of rf-sputtered $Zn_2SnO_4$ thin films.

Application of Modified Rapid Thermal Annealing to Doped Polycrystalline Si Thin Films Towards Low Temperature Si Transistors

  • So, Byung-Soo;Kim, Hyeong-June;Kim, Young-Hwan;Hwang, Jin-Ha
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.552-556
    • /
    • 2008
  • Modified thermal annealing was applied to the activation of the polycrystalline silicon films doped as p-type through implantation of $B_2H_6$. The statistical design of experiments was successfully employed to investigate the effect of rapid thermal annealing on activation of polycrystalline Si doped as p-type. In this design, the input variables are furnace temperature, power of halogen lamps, and alternating magnetic field. The degree of ion activation was evaluated as a function of processing variables, using Hall effect measurements and Raman spectroscopy. The main effects were estimated to be furnace temperature and RTA power in increasing conductivity, explained by recrystallization of doped ions and change of an amorphous Si into a crystalline Si lattice. The ion activation using rapid thermal annealing is proven to be a highly efficient process in low temperature polycrystalline Si technology.

Microstructure and Magnetic Properties of Au-doped Finemet-type Alloy

  • Le, Anh-Tuan;Kim, Chong-Oh;Ha Nguyen Duy;Chau Nguyen;Tho Nguyen Duc;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • 제11권1호
    • /
    • pp.36-42
    • /
    • 2006
  • In this report, we demonstrate a comprehensive analysis of the effects of Au addition on the microstructure and magnetic properties of $Fe_{73.5}Si_{13.5}B_{9}Nb_{3}Au_1$ Finemet-type alloy. It was found that the as-quenched alloys were the amorphous state and turned into nanocrystalline state under heat treatments. The DSC analysis indicates that the sharply exothermal peak corresponding to the crystallization of the $\alpha-Fe(Si)$ was observed at $547-579^{\circ}C$ depending on the heating rates, which is little higher than that of original Finemet (542-$570{^{\circ}C}$, respectively). Besides, the thermomagnetic result confirmed that the full substitution of Cu by Au with the single phase structure in the M(T) curve along cooling cycle. Ultrasoft magnetic properties of the nanocrystallized samples were significantly enhanced by the proper annealing such as the increase of permeability and the decrease of the coercivity. The optimum annealing condition was found at the annealing temperature of $540^{\circ}C$ and the increase of the annealing time up to 90 min.

스퍼터링으로 퇴적시킨 바나듐 산화막의 구조적, 광학적 특성에 미치는 산소 어닐링의 효과 (Effect of Oxygen Annealing on the Structural and Optical Properties of Sputter-deposited Vanadium Oxide Thin Films)

  • 최복길;최창규;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.1003-1010
    • /
    • 2000
  • Thin films of vanadium oxide(VOx) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. Crystal structure, surface morphology, chemical composition, molecular structure and optical properites of films in-situ annealed in O$_2$ambient with various heat-treatment conditions are characterized through XRD, SEM, AES, RBS, RTIR and optical absorption measurements. The films annealed below 200$\^{C}$ are amorphous, and those annealed above 300$\^{C}$ are polycrystalline. The growth of grains and the transition of vanadium oxide into the higher oxide have been observed with increasing the annealing temperature and time. The increase of O/V ratio with increasing the annealing temperature and time is attributed to the diffusion of oxygen and the partial filling of oxygen vacancies. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. Also indirect and direct optical band gaps were increased with increasing the annealing temperature and time.

  • PDF