• 제목/요약/키워드: Ann

검색결과 2,352건 처리시간 0.028초

Influences of the Input on ANN and QSPR of Homopolymers

  • Sun, Hong;Tang, Yingwu;Wu, Guoshi
    • Macromolecular Research
    • /
    • 제10권1호
    • /
    • pp.13-17
    • /
    • 2002
  • An artificial neural network (ANN) was used to study the relationship between the glass transition temperature (T$_{g}$) and the structure of homopolymers. The input is very important for the ANN. In this paper, six kinds of input vectors were designed for the ANN. Of the six approaches, the best one gave the is T$_{g}$ of 251 polymers with a standard deviation of 8 K and a maximum error of 29 K. The trained ANN also predicted the T$_{g}$ of 20 polymers which are not included in the 251 polymers with a standard deviation of 7 K and a maximum error of 21 K. 21 K.

웨이블릿 패킷변환과 신경망을 결합한 하천수위 예측모델 (River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network)

  • 서영민
    • 한국환경과학회지
    • /
    • 제24권8호
    • /
    • pp.1023-1036
    • /
    • 2015
  • A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.

역전파 알고리즘을 이용한 상수도 일일 급수량 예측 (Forecasting of Urban Daily Water Demand by Using Backpropagation Algorithm Neural Network)

  • 이경훈;문병석;오창주
    • 상하수도학회지
    • /
    • 제12권4호
    • /
    • pp.43-52
    • /
    • 1998
  • The purpose of this study is to establish a method of estimating the daily urban water demend using Backpropagation algorithm is part of ANN(Artificial Neural Network). This method will be used for the development of the efficient management and operations of the water supply facilities. The data used were the daily urban water demend, the population and weather conditions such as treperarture, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. We adjusted the weights of ANN that are iterated the training data patterns. We normalized the non-stationary time series data [-1,+1] to fast converge, and choose the input patterns by statistical methods. We separated the training and checking patterns form input date patterns. The performance of ANN is compared with multiple-regression method. We discussed the representation ability the model building process and the applicability of ANN approach for the daily water demand. ANN provided the reasonable results for time series forecasting.

  • PDF

Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load

  • Sonmez, Mustafa;Aydin Komur, M.
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.159-174
    • /
    • 2010
  • Elastic buckling load of perforated steel plates is typically predicted using the finite element or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By using this formula, the elastic buckling load of perforated plates can be calculated easily without setting up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element method (FEM) produced by the commercial software package ANSYS are used to train and test the network. The accuracy of the proposed formula based on the trained ANN model is evaluated by comparing with the results of different researchers. The results show that the presented ANN-based formula is practical in predicting the elastic buckling load of perforated plates without the need of an ANN platform.

Prediction of compressive strength for HPC mixes containing different blends using ANN

  • Lingam, Allam;Karthikeyan, J.
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.621-632
    • /
    • 2014
  • This paper is aimed at adapting Artificial Neural Networks (ANN) to predict the compressive strength of High Performance Concrete (HPC) containing binary and quaternary blends. The investigations were done on 23 HPC mixes, and specimens were cast and tested after 7, 28 and 56 days curing. The obtained experimental datas of 7, 28 and 56 days are trained using ANN which consists of eight input parameters like cement, metakaolin, blast furnace slag and fly ash, fine aggregate, coarse aggregate, superplasticizer and water binder ratio. The corresponding output parameters are 7, 28 and 56 days compressive strengths. The predicted values obtained using ANN show a good correlation between the Experimental data. The performance of the 8-9-3-3 architecture was better than other architectures. It concluded that ANN tool is convenient and time saving for predicting compressive strength at different ages.

Application of Artificial Neural Network to Predict the Tensile Properties of Dual-Phase Steels

  • Seung-Hyeok Shin;Sang-Gyu Kim;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • 제66권3호
    • /
    • pp.719-723
    • /
    • 2021
  • An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloying elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship between alloying elements, microstructural factors, and tensile properties in dual-phase steels.

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

데이터 마이닝 기반의 품질설계지원시스템 (Quality Design Support System based on Data Mining Approach)

  • 지원철
    • 한국경영과학회지
    • /
    • 제28권3호
    • /
    • pp.31-47
    • /
    • 2003
  • Quality design in practice highly depends on human designer's intuition and past experiences due to lack of formal knowledge about the relationship among 10 variables. This paper represents an data mining approach for developing quality design support system that integrates Case Based Reasoning (CBR) and Artificial Neural Networks (ANN) to effectively support all the steps in quality design process. CBR stores design cases in a systematic way and retrieve them quickly and accurately. ANN predicts the resulting quality attributes of design alternatives that are generated from CBR's adaptation process. When the predicted attributes fail to meet the target values, quality design simulation starts to further adapt the alternatives to the customer's new orders. To implement the quality design simulation, this paper suggests (1) the data screening method based on ξ-$\delta$ Ball to obtain the robust ANN models from the large production data bases, (2) the procedure of quality design simulation using ANN and (3) model management system that helps users find the appropriate one from the ANN model base. The integration of CBR and ANN provides quality design engineers the way that produces consistent and reliable design solutions in the remarkably reduced time.

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.

NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM Drive using NFC and ANN)

  • 이정철;이홍균;정동화
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.282-289
    • /
    • 2005
  • 본 논문에서는 NFC(Neuro-Fuzzy Controller)와 ANN(Artificial Neural network) 제어기를 이용한 IPMSM의 속도 제어 및 추정을 제시한다. PI 제어기에서 나타나는 문제점을 해결하기 위하여 신경회로망과 퍼지제어를 혼합적용한 NFC를 설계한다. 신경회로망의 고도의 적응제어와 퍼지 제어기의 강인성 제어의 장점들을 접목한다. 다음은 ANN을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 IPMSM 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다.