• Title/Summary/Keyword: Ann

Search Result 2,352, Processing Time 0.029 seconds

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

Quantitative structure activity relationships for medicines based on use of neural networks

  • Aoyama, Tomoo;Zhu, Hanxi;Nagashima, Umpei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.518-518
    • /
    • 2000
  • We have researched quantitative structure activity relationships between molecular structure of medicines and physiological activity. Since they are non-linear, neural networks are useful tool to research them. There are many ranks for the non-linearity; therefore, the neuron function must be selected carefully. As the results of some trial calculations, Ire find the sigmoid-linear functions pair. We call the neural network constructed of the pair as ANN. The inter- or extrapolation abilities of the ANN are excellent; therefere, ANN is a superior predictor for the relationships. We evaluated the anticarcinogenic medicines, Carboquinone derivatives, by the developed ANN and leave-one-out method.

  • PDF

Prediction of Arc Welding Quality through Artificial Neural Network (신경망 알고리즘을 이용한 아크 용접부 품질 예측)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.44-48
    • /
    • 2013
  • Artificial neural network (ANN) model is applied to predict arc welding process window for automotive steel plate. Target weldment was various automotive steel plate combination with lap fillet joint. The accuracy of prediction was evaluated through comparison experimental result to ANN simulation. The effect of ANN variables on the accuracy is investigated such as number of hidden layers, perceptrons and transfer function type. A static back propagation model is established and tested. The result shows comparatively accurate predictability of the suggested ANN model. However, it restricts to use nonlinear transfer function instead of linear type and suggests only one single hidden layer rather than multiple ones to get better accuracy. In addition to this, obvious fact is affirmed again that the more perceptrons guarantee the better accuracy under the precondition that there are enough experimental database to train the neural network.

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Application of artificial neural network for determination of wind induced pressures on gable roof

  • Kwatra, Naveen;Godbole, P.N.;Krishna, Prem
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • Artificial Neural Networks (ANN) have the capability to develop functional relationships between input-output patterns obtained from any source. Thus ANN can be conveniently used to develop a generalised relationship from limited and sometimes inconsistent data, and can therefore also be applied to tackle the data obtained from wind tunnel tests on building models with large number of variables. In this paper ANN model has been developed for predicting wind induced pressures in various zones of a Gable Building from limited test data. The procedure is also extended to a case wherein interference effects on a gable roof building by a similar building are studied. It is found that the Artificial Neural Network modelling is seen to predict successfully, the pressure coefficients for any roof slope that has not been covered by the experimental study. It is seen that ANN modelling can lead to a reduction of the wind tunnel testing effort for interference studies to almost half.

Proper Arc Welding Condition Derivation of Auto-body Steel by Artificial Neural Network (신경망 알고리즘을 이용한 차체용 강판 아크 용접 조건 도출)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.

Identifying prospective buyers for specific products using artificial neural network and induction rules (인공신경망과 귀납규칙기법을 이용한 제품별 예상 구매고객예측)

  • Lee Geon-Ho;Jeong Su-Mi;Jeong Byeong-Hui
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.395-398
    • /
    • 2004
  • It is effective and desirable for a proper customer relational management(CRM) to send an email of product sales' advertisement bills for the prospective customers rather than to send spam mails for non specific customers. This study identifies the prospective customers with high probability to buy the specific products using Artificial Neural Network(ANN) and Induction Rule(IR) technique. We suggest an integrated model, IRANN of ANN and IR of decision tree program C5.0 and, also compare and analyze the accuracy of ANN, IR, and IRANN each other.

  • PDF

Prediction of Machining Performance using ANN and Training using ACO (ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련)

  • Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

Development of Neural Network System for Short-Term Load Forecasting for a Special Day (특수일 전력수요예측을 위한 신경회로망 시스템의 개발)

  • Kim, Kwang-Ho;Youn, Hyoung-Sun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.379-384
    • /
    • 1998
  • Conventional short-term load forecasting techniques have limitation in their use on holidays due to dissimilar load behaviors of holidays and insufficiency of pattern data. Thus, a new short-term load forecasting method for special days in anomalous load conditions is proposed in this paper. The proposed method uses two Artificial Neural Networks(ANN); one is for the estimation of load curve, and the other is for the estimation of minimum and maximum value of load. The forecasting procedure is as follows. First, the normalized load curve is estimated by ANN. At next step, minimum and maximum values of load in a special day are estimated by another ANN. Finally, the estimate of load in a whole special day is obtained by combining these two outputs of ANNs. The proposed method shows a good performance, and it may be effectively applied to the practical situations.

  • PDF