• Title/Summary/Keyword: Ann

Search Result 2,352, Processing Time 0.032 seconds

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

Transpiration Prediction of Sweet Peppers Hydroponically-grown in Soilless Culture via Artificial Neural Network Using Environmental Factors in Greenhouse (온실의 환경요인을 이용한 인공신경망 기반 수경 재배 파프리카의 증산량 추정)

  • Nam, Du Sung;Lee, Joon Woo;Moon, Tae Won;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.411-417
    • /
    • 2017
  • Environmental and growth factors such as light intensity, vapor pressure deficit, and leaf area index are important variables that can change the transpiration rate of plants. The objective of this study was to compare the transpiration rates estimated by modified Penman-Monteith model and artificial neural network. The transpiration rate of paprika (Capsicum annuum L. cv. Fiesta) was obtained by using the change in substrate weight measured by load cells. Radiation, temperature, relative humidity, and substrate weight were collected every min for 2 months. Since the transpiration rate cannot be accurately estimated with linear equations, a modified Penman-Monteith equation using compensated radiation (Shin et al., 2014) was used. On the other hand, ANN was applied to estimating the transpiration rate. For this purpose, an ANN composed of an input layer using radiation, temperature, relative humidity, leaf area index, and time as input factors and five hidden layers was constructed. The number of perceptons in each hidden layer was 512, which showed the highest accuracy. As a result of validation, $R^2$ values of the modified model and ANN were 0.82 and 0.94, respectively. Therefore, it is concluded that the ANN can estimate the transpiration rate more accurately than the modified model and can be applied to the efficient irrigation strategy in soilless cultures.

Experimental Study for Characteristics of Assessment of Neural Networks for Structural Damage Detection (구조물의 손상평가용 신경망의 특성평가에 관한 실험적 연구)

  • Oh, Ju-Won;Heo, Gwang-Hee;Jung, Eui-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.179-186
    • /
    • 2010
  • When a structure is damaged, its dynamic responses (natural frequency, acceleration, strain) are found to be changed. The ANN(Artificial Neural Network) damage-assesment method is that some measured dynamic signals from the structural changing dynamic responses are applied to ANN to assess the structural damage. Although there have been some studies on a certain typical cases so far, it is rare to find studies about the characteristics of the ANN damage-assesment method or about its applicability, its strength and weakness. So this study researches on the characteristics of ANN damage assesment method and on a problem in application of the various dynamic responses to ANN. What the ANN damage assessment method usually does in past researches is to teach an ANN by using some response signals obtained from damaged structures under one kind of excitations and to identify the locations and the extents of damage of same structures under the same excitations. However, the excitations inflicted on the structures are not always the same. Thus this study experiments whether a ANN which is trained using the same excitations is able to identify the damage when different excitations inflict. All response signals are obtained from experimental models.

Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network (인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가)

  • Park, Do Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2006
  • In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

Development of IT-based tunnel design system (IT 기반의 터널 최적 설계를 위한 시스템 개발)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Yoo, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper concerns the development of a knowledge-based tunnel design system within the framework of artificial neural networks (ANNs). The system is aimed at expediting a routine tunnel design works such as determination of support patterns and stability analysis of selected support patterns. A number of sub-modules for determination of support patterns and stability assessment were developed and implemented to the system. It is shown that the ANNs trained with the results of 2D and 3D numerical analyses can be generalized with a reasonable accuracy, and that the ANN based tunnel design concept is a robust tool for tunnel design optimization. The details of the system architecture and the ANNs development are discussed in this paper.

  • PDF

Training an Artificial Neural Network (ANN) to Control the Tap Changer of Parallel Transformers for a Closed Primary Bus

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Voltage control is an essential part of the electric energy transmission and distribution system to maintain proper voltage limit at the consumer's terminal. Besides the generating units that provide the basic voltage control, there are many additional voltage-controlling agents e.g., shunt capacitors, shunt reactors, static VAr compensators, regulating transformers mentioned in [1], [2]. The most popular one, among all those agents for controlling voltage levels at the distribution and transmission system, is the on-load tap changer transformer. It serves two functions-energy transformation in different voltage levels and the voltage control. Artificial Neural Network (ANN) has been realized as a convenient tool that can be used in controlling the on load tap changer in the distribution transformers. Usage of the ANN in this area needs suitable training and testing data for performance analysis before the practical application. This paper briefly describes a procedure of processing the data to train an Artificial Neural Network (ANN) to control the tap changer operating decision of parallel transformers for a closed primary bus. The data set are used to train a two layer ANN using three different neural net learning algorithms, namely, Standard Backpropagation [3], Bayesian Regularization [4] and Scaled Conjugate Gradient [5]. The experimental results are presented including performance analysis.

  • PDF

Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm

  • Liu, Jiankang;Luan, Hengjie;Zhang, Yuanchao;Sakaguchi, Osamu;Jiang, Yujing
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-95
    • /
    • 2020
  • Measurement of the unconfined compressive strength (UCS) of the rock is critical to assess the quality of the rock mass ahead of a tunnel face. In this study, extensive field studies have been conducted along 3,885 m of the new Nagasaki tunnel in Japan. To predict UCS, a hybrid model of artificial neural network (ANN) based on genetic algorithm (GA) optimization was developed. A total of 1350 datasets, including six parameters of the Measurement-While- Drilling data and the UCS were considered as input and output parameters respectively. The multiple linear regression (MLR) and the ANN were employed to develop contrast models. The results reveal that the developed GA-ANN hybrid model can predict UCS with higher performance than the ANN and MLR models. This study is of great significance for accurately and effectively evaluating the quality of rock masses in tunnel engineering.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

Application of Artificial Neural Networks(ANN) to Ultrasonically Enhanced Soil Flushing of Contaminated Soils (초음파-토양수세법을 이용한 오염지반 복원률증대에 인공신경망의 적용)

  • 황명기;김지형;김영욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.343-350
    • /
    • 2003
  • The range of applications of artificial neural networks(Am) in many branches of geotechnical engineering is growing rapidly. This study was undertaken to develop an analysis model representing ultrasonically enhanced soil flushing by the use of ANN. Input data for the model-development were obtained by laboratory study, and used for training and verification. Analyses involved various ranges of momentum, loaming rate, activation function, hidden layer, and nodes. Results of the analyses were used to obtain the optimum conditions for establishing and verifying the model. The coefficient of correlation between the measured and the predicted data using the developed model was relatively high. It shows potential application of ANN to ultrasonically enhanced soil flushing which is not easy to build up a mathematical model.