• Title/Summary/Keyword: Anmyeon-Do region

Search Result 5, Processing Time 0.018 seconds

Airborne In-situ Measurement of CO2 and CH4 in Korea: Case Study of Vertical Distribution Measured at Anmyeon-do in Winter (항공기를 이용한 온실가스 CO2와 CH4의 연속관측: 안면도 겨울철 연직분포사례 분석)

  • Li, Shanlan;Goo, Tae-Young;Moon, Hyejin;Labzovskii, Lev;Kenea, Samuel Takele;Oh, Young-Suk;Lee, Haeyoung;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.511-523
    • /
    • 2019
  • A new Korean Meteorological Administration (KMA) airborne measurement platform has been established for regular observations for scientific purpose over South Korea since late 2017. CRDS G-2401m analyzer mounted on the King Air 350HW was used to continuous measurement of CO2, CH4 and CO mole fraction. The total uncertainty of measurements was estimated to be 0.07 ppm for CO2, 0.5 ppb for CH4, and 4.2 ppb for CO by combination of instrument precision, repeatability test simulated in-flight condition and water vapor correction uncertainty. The airborne vertical profile measurements were performed at a regional Global Atmosphere Watch (GAW) Anmyeon-do (AMY) station that belongs to the Total Carbon Column Observing Network (TCCON) and provides concurrent observations to the Greenhouse Gases Observing Satellite (GOSAT) overpasses. The vertical profile of CO2 shows clear altitude gradient, while the CH4 shows non-homogenous pattern in the free troposphere over Anmyeon-do. Vertically averaged CO2 at the altitude between 1.5 and 8.0km are lower than AMY surface background value about 7 ppm but higher than that observed in free troposphere of western pacific region about 4 ppm, respectively. CH4 shows lower level than those from ground GAW stations, comparable with flask airborne data that was taken in the western pacific region. Furthermore, this study shows that the combination of CH4 distribution in free troposphere and trajectory analysis, taking account of convective mixing, is a useful tool in investigating CH4 transport processes from tropical region to Korean region in winter season.

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Residents' Perception Differences on Tourism Impacts (지역주민의 특성에 따른 관광영향지각 차이분석)

  • Cho, Bae-Hang;Choi, Young-Hee;Kim, Dong-Hee
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.5
    • /
    • pp.426-439
    • /
    • 2005
  • The purpose of this study was to analyze the perceptions of local residents towards the tourism impacts. The region of this study, Anmyeon-do has been developed as an international tourist destination since 1993. This study was trying to estimate the perception differences between groups of resident in teams of socio-demographics, geographic characteristics and psycho-behavioral characteristics. Self-administered questionnaire survey was administered for the residents. Frequency analysis, factor analysis, t-test, and ANOVA was tested for the perception differences. Using segmentation approaches, it was revealed that geographic characteristics and psycho-behavioral characteristics were relatively useful to test the perceptions differences of residents towards tourism impacts. Implications are drawn for regional tourism policy and management.

  • PDF

Change Detection of Land Cover Environment using Fuzzy Logic Operation : A Case Study of Anmyeon-do (퍼지논리연산을 이용한 토지피복환경 변화분석: 안면도 사례연구)

  • 장동호;지광훈;이현영
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.305-317
    • /
    • 2002
  • The purpose of this study is to analyze the land cover environmental changes in the Anmyeon-do. Especially, it centers on the changes in the land cover environment through methods of GIS and remote sensing. The land cover environmental change areas were detected from remote sensing data, and geographic data sets related to land cover environment change were built as a spatial database in GIS. Fuzzy logic was applied for data representation and integration of thematic maps. In the natural, social, and economic environment variables, the altitude, population density, and the national land use planning showed higher fuzzy membership values, respectively. After integrating all thematic maps using fuzzy logic operation, it is possible to predict the change quantitatively. In the study area, a region where land cover change will be likely to occur is the one on a plain near the shoreline. In particular, the hills of less than 5% slope and less than 15m altitude, adjacent to the ocean, were quite vulnerable to the aggravation of coastal environment on account of current, large-scale development. In conclusions, it is expected that the generalized scheme used in this study is regarded as one of effective methodologies for land cover environmental change detection from geographic data.

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do (안면도 지역 온실기체 기원에 따른 CO/CO2 비율 변동성 분석 연구)

  • Kim, Jaemin;Lee, Haeyoung;Kim, Sumin;Chung, Chu-Yong;Kim, Yeon-Hee;Lee, Greem;Choi, Kyung Bae;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.625-635
    • /
    • 2021
  • South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.