• Title/Summary/Keyword: Ankyrin-G

Search Result 8, Processing Time 0.021 seconds

Identification of Proteins Interacting with C- Terminal Region of Human Ankyrin-G

  • Lee, Yeong-Mi;Lee, Min-A;Park, Jae-Kyoung;Kim, Myong-Shin;Jeon, Eun-Bee;Park, Su-Il;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.159-165
    • /
    • 2003
  • Ankyrins are a ubiquitously expressed family of intracellular adaptor proteins involved in targeting diverse proteins to specialized membrane domains in both the plasma membrane and the endoplasmic reticulum. Recently, the studies with C-terminus of ankyrins have identified that ankyrin-B is capable of interacting with Hsp40 and sAnkl is capable of interacting with obscurin and titin, but the function of C-terminal domain of ankyrin-G remains unknown. To identify proteins interacting C-terminus of ankyrin-G, we used the C-terminus of ankyrin-G as a bait for a yeast two-hybrid screen of brain cDNA library. Approximately 1.33$\times$l0$^6$ transformants were screened, of which 13 positive clones were obtained as determined by activation of HIS3, ADE2 and MELl reporter genes. Sequence analyses of these 13 plasmids revealed that cDNA inserts of 13 colonies showed highly homologous to 11 genes, including 5 known (i.e., Na$^+$/K$^+$ ATPase $\beta$1, SERBPl, UTF2, cytochrome C oxidase and collagen IV $\alpha$2) and 6 unknown genes. The evaluation of the proteins that emerge from these experiments provides a rational approach to investigate the those proteins significant in interaction with ankyrin-G.

  • PDF

Ankyrin-B Interacts with the C-terminal Region of Hsp40

  • Min, Byung-In;Ko, Han-Suk;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.9 no.2
    • /
    • pp.105-110
    • /
    • 2003
  • Ankyrins are a ubiquitously expressed family of intracellular adaptor proteins involved in targeting diverse proteins to specialized membrane domains in both the plasma membrane and the endoplasmic reticulum. Canonical ankyrins are 190-220 kDa proteins expressed in most tissues and cell types and comprise a membrane-binding domain (MBD) of 24 ANK repeats, a spectrin-binding domain, a death domain and a C-terminal domain. Rescue studies with ankyrin-B/G chimeras have identified the C-terminal domain of ankyrin-B as the defining domain in specifying ankyrin-B activity, but the function of C-terminal domain of ankyrin-B is, however, not known. We report here that the C-terminal domain of ankyrin-B is capable of interacting with the C-terminal Region of Hsp40. The Hsps are induced not only by heat shock but also by various other environmental stresses. Hsps are also expressed constitutively at normal growth temperatures and have basic and indispensable functions in the life cycle of proteins as molecular chaperones, as well as playing a role in protecting cells from the deleterious stresses. The binding sites required in the interaction between C-terminal domain of ankyrin-B and C-terminal region of Hsp40 were characterized using the yeast two-hybrid system and GST-pull down assay. The interaction between ankyrin-B and Hsp40 represents the first direct evidence of ankyrin's role as chaperones.

  • PDF

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

The innate immune response transcription factor Bombyx mori Relish1 induces high-level antimicrobial peptides in silkworm

  • Kim, Seong-Wan;Kim, Seong-Ryul;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • To artificially enhance antimicrobial peptide expression in Bombyx mori, we constructed genetically engineered silkworms overexpressing Rel family transcription factor. The truncated BmRelish1 (BmRelish1t) gene contained a Rel homolog domain (RHD), nuclear localization signal (NLS), acidic and hydrophobic amino acid (AHAA)-rich region, and death domain (DD), but no ankyrin-repeat (ANK) domain. The BmRelish1t gene was controlled by B. mori cytoplasmic actin 3 promoter in the PiggyBac transposon vector. Chromosome analysis of G1 generations of a transgenic silkworm with EGFP expression confirmed stable insertion of BmRelish1t. BmRelish1t gene overexpression in transgenic silkworms resulted in higher mRNA expression levels of B. mori antimicrobial peptides such as lebocin(~20.5-fold), moricin(~8.7-fold), and nuecin(~17.4-fold) than those in normal silkworms.

Regulation of ANKRD9 expression by lipid metabolic perturbations

  • Wang, Xiaofei;Newkirk, Robert F.;Carre, Wilfrid;Ghose, Purnima;Igobudia, Barry;Townsel, James G.;Cogburn, Larry A.
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.568-573
    • /
    • 2009
  • Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone ($T_3$) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Pulpitis pain relief by modulating sodium channels in trigeminal ganglia (삼차신경절의 나트륨 채널 조절을 통한 치수염 통증 완화 효과)

  • Kyung-Hee Lee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.219-227
    • /
    • 2024
  • Objectives: The pulp is the center of the tooth containing nerves and blood vessels. The condition in which the pulp becomes inflamed due to caries or periodontitis is called pulpitis. Pulpitis is a difficult-to-treat disease and causes peripheral nerve tissue changes and severe pain; however, the relationship between neuronal activity and voltage-gated sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG) during pulpitis has not been well studied. In this study, we found that experimentally induced pulpitis activates Nav1.7 expression in the periphery, leading to neuronal overexpression in the TG. Thus, we sought to identify ways to regulate this process. Methods: Acute pulpitis was induced in rat maxillary molars by treating the pulp with allyl isothiocyanate (AITC). Three days later, in vivo optical imaging was used to record and compare neural activities in the TG. Western blotting was used to identify molecular changes in terms of the expression of extracellular signal-regulated kinase (ERK), c-Fos, transient receptor potential ankyrin 1 (TRPA1), and collapsin response mediator protein-2 (CRMP2) in the brain stem. Results: The results confirmed the neurological changes in the TGs of the pulpitis model, and histological and molecular biological evidence confirmed that increased Nav1.7 expression induced by pulpitis leads to pain. Furthermore, selective inhibition of Nav1.7 resulted in changes in neural activity, suggesting that pulpitis induces increased Nav1.7 expression, and that effective control of Nav1.7 could potentially reduce pain. Conclusions: The inhibition of overexpressed Nav1.7 channels may modulate nociceptive signal processing in the brain and effectively control pain associated with pulpitis.

Physiological and Proteomic Responses of Barley Seedlings to Salt Stress (보리의 생육초기 염 스트레스에 따른 생리적 반응과 프로테옴 변화)

  • Kim, Dea-Wook;Yun, Seong-Kun;Park, Hyoung-Ho;Hwang, Jong-Jin;Han, Ok-Kyu;Park, Tae-Il;Jung, Gun-Ho;Lee, Jae-Eun;Kim, Sun-Lim;Chung, Young-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.537-545
    • /
    • 2011
  • This study was conducted to obtain basic information on physiological and proteomic responses of barley seedlings to salt stress. Shoot dry weight decreased significantly as the level of soil salinity increased. Salt stress-induced decrease of relative shoot dry weight was lower in cv. "Sanglok" than in cv. "Sunwoo". Under the salt stress, SPAD value decreased, and the value was higher in cv. "Sanglok" than in cv. "Sunwoo". Sodium ion content in the leaves increased as NaCl concentration increased, and the content was higher in cv. "Sunwoo" than in cv. "Sanglok". The K+/Na+ ratio was higher in cv. "Sanglok" than in cv. "Sunwoo". Salt stress-induced alterations in protein expression of the leaves were detected by two dimensional electrophoresis, and 47 protein spots showing altered expression were selected. Among the selected protein spots, 17 protein spots were up-regulated and 28 spots down-regulated in cv. "Sanglok". In cv. "Sunwoo", 14 protein spots were up-regulated and 27 spots down-regulated. Out of 47 deferentially expressed protein spots, 18 protein spots were identified using mass spectrometry and NCBI protein database. Among the identified proteins, ten proteins are known to be involved in various stress responses, but the others are not directly involved in stress responses.