• Title/Summary/Keyword: Anisotropic analytical algorithm

Search Result 17, Processing Time 0.024 seconds

Dosimetric Comparison between Varian Halcyon Analytical Anisotropic Algorithm and Acuros XB Algorithm for Planning of RapidArc Radiotherapy of Cervical Carcinoma

  • Mbewe, Jonathan;Shiba, Sakhele
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.130-136
    • /
    • 2021
  • Purpose: The Halcyon radiotherapy platform at Groote Schuur Hospital was delivered with a factory-configured analytical anisotropic algorithm (AAA) beam model for dose calculation. In a recent system upgrade, the Acuros XB (AXB) algorithm was installed. Both algorithms adopt fundamentally different approaches to dose calculation. This study aimed to compare the dose distributions of cervical carcinoma RapidArc plans calculated using both algorithms. Methods: A total of 15 plans previously calculated using the AAA were retrieved and recalculated using the AXB algorithm. Comparisons were performed using the planning target volume (PTV) maximum (max) and minimum (min) doses, D95%, D98%, D50%, D2%, homogeneity index (HI), and conformity index (CI). The mean and max doses and D2% were compared for the bladder, bowel, and femoral heads. Results: The AAA calculated slightly higher targets, D98%, D95%, D50%, and CI, than the AXB algorithm (44.49 Gy vs. 44.32 Gy, P=0.129; 44.87 Gy vs. 44.70 Gy, P=0.089; 46.00 Gy vs. 45.98 Gy, P=0.154; and 0.51 vs. 0.50, P=0.200, respectively). For target min dose, D2%, max dose, and HI, the AAA scored lower than the AXB algorithm (41.24 Gy vs. 41.30 Gy, P=0.902; 47.34 Gy vs. 47.75 Gy, P<0.001; 48.62 Gy vs. 50.14 Gy, P<0.001; and 0.06 vs. 0.07, P=0.002, respectively). For bladder, bowel, and left and right femurs, the AAA calculated higher mean and max doses. Conclusions: Statistically significant differences were observed for PTV D2%, max dose, HI, and bowel max dose (P>0.05).

Comparison Analysis of Patient Specific Quality Assurance Results using portal dose image prediction and Anisotropic analytical algorithm (Portal dose image prediction과 anisotropic analytical algorithm을 사용한 환자 특이적 정도관리 결과 비교 분석)

  • BEOMSEOK AHN;BOGYOUM KIM;JEHEE LEE
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.15-21
    • /
    • 2023
  • Purpose: The purpose of this study is to compare the performance of the anisotropic analytical algorithm (AAA) and portal dose image prediction (PDIP) for patient-specific quality assurance based on electronic portal imaging device, and to evaluate the clinical feasibility of portal dosimetry using AAA. Subjects and methods: We retrospectively selected a total of 32 patients, including 15 lung cancer patients and 17 liver cancer patients. Verification plans were generated using PDIP and AAA. We obtained gamma passing rates by comparing the calculated distribution with the measured distribution and obtained MLC positional difference values. Results: The mean gamma passing rate for lung cancer patients was 99.5% ± 1.1% for 3%/3 mm using PDIP and 90.6% ± 5.8% for 1%/1 mm. Using AAA, the mean gamma passing rate was 98.9% ± 1.7% for 3%/3 mm and 87.8% ± 5.2% for 1%/1 mm. The mean gamma passing rate for liver cancer patients was 99.9% ± 0.3% for 3%/3 mm using PDIP and 96.6% ± 4.6% for 1%/1 mm. Using AAA, the mean gamma passing rate was 99.6% ± 0.5% for 3%/3 mm and 89.5% ± 6.4% for 1%/1 mm. The MLC positional difference was small at 0.013 mm ± 0.002 mm and showed no correlation with the gamma passing rate. Conclusion: The AAA algorithm can be clinically used as a portal dosimetry calculation algorithm for patientspecific quality assurance based on electronic portal imaging device.

  • PDF

Comparison of Dose Distributions Calculated by Anisotropic Analytical Algorithm and Pencil Beam Convolution Algorithm at Tumors Located in Liver Dome Site (간원개에 위치한 종양에 대한 Anisotropic Analyticalal Algorithm과 Pencil Beam Convolution 알고리즘에 따른 전달선량 비교)

  • Park, Byung-Do;Jung, Sang-Hoon;Park, Sung-Ho;Kwak, Jeong-Won;Kim, Jong-Hoon;Yoon, Sang-Min;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • The purpose of this study is to evaluate the variation of radiation dose distribution for liver tumor located in liver dome and for the interest organs(normal liver, kidney, stomach) with the pencil beam convolution (PBC) algorithm versus anisotropic Analyticalal algorithm (AAA) of the Varian Eclipse treatment planning system, The target volumes from 20 liver cancer patients were used to create treatment plans. Treatment plans for 10 patients were performed in Stereotactic Body Radiation Therapy (SBRT) plan and others were performed in 3 Dimensional Conformal Radiation Therapy (3DCRT) plan. dose calculation was recalculated by AAA algorithm after dose calculation was performed by PBC algorithm for 20 patients. Plans were optimized to 100% of the PTV by the Prescription Isodose in Dose Calculation with the PBC algorithm. Plans were recalculated with the AAA, retaining identical beam arrangements, monitor units, field weighting and collimator condition. In this study, Total PTV was to be statistically significant (SRS: p=0.018, 3DCRT: p=0.006) between PBC and AAA algorithm. and in the case of PTV, ITV in liver dome, plans for 3DCRT were to be statistically significant respectively (p=0.013, p=0.024). normal liver and kidney were to be statistically significant (p=0.009, p=0.037). For the predictive index of dose variation, CVF ratio was to be statistically significant for PTV in the liver dome versus PTV (SRS r=0.684, 3DCRT r=0.732, p<0.01) and CVF ratio for Tumor size was to be statistically significant (SRS r=-0.193, p=0.017, 3DCRT r=0.237, p=0.023).

Examinations on Applications of Manual Calculation Programs on Lung Cancer Radiation Therapy Using Analytical Anisotropic Algorithm (Analytical Anisotropic Algorithm을 사용한 폐암 치료 시 MU 검증 프로그램 적용에 관한 고찰)

  • Kim, Jong-Min;Kim, Dae-Sup;Hong, Dong-Ki;Back, Geum-Mun;Kwak, Jung-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • Purpose: There was a problem with using MU verification programs for the reasons that there were errors of MU when using MU verification programs based on Pencil Beam Convolution (PBC) Algorithm with radiation treatment plans around lung using Analytical Anisotropic Algorithm (AAA). On this study, we studied the methods that can verify the calculated treatment plans using AAA. Materials and Methods: Using Eclipse treatment planning system (Version 8.9, Varian, USA), for each 57 fields of 7 cases of Lung Stereotactic Body Radiation Therapy (SBRT), we have calculated using PBC and AAA with dose calculation algorithm. By developing MU of established plans, we compared and analyzed with MU of manual calculation programs. We have analyzed relationship between errors and 4 variables such as field size, lung path distance of radiation, Tumor path distance of radiation, effective depth that can affect on errors created from PBC algorithm and AAA using commonly used programs. Results: Errors of PBC algorithm have showned $0.2{\pm}1.0%$ and errors of AAA have showned $3.5{\pm}2.8%$. Moreover, as a result of analyzing 4 variables that can affect on errors, relationship in errors between lung path distance and MU, connection coefficient 0.648 (P=0.000) has been increased and we could calculate MU correction factor that is A.E=L.P 0.00903+0.02048 and as a result of replying for manual calculation program, errors of $3.5{\pm}2.8%$ before the application has been decreased within $0.4{\pm}2.0%$. Conclusion: On this study, we have learned that errors from manual calculation program have been increased as lung path distance of radiation increases and we could verified MU of AAA with a simple method that is called MU correction factor.

  • PDF

Study on Computerized Treatment Plan of Field-in-Field Intensity Modulated Radiation Therapy and Conventional Radiation Therapy according to PBC Algorithm and AAA on Breast Cancer Tangential Beam (유방암 접선조사에서 PBC 알고리즘과 AAA에 따른 Field-in-Field Intensity Modulated Radiation Therapy와 Conventional Radiation Therapy 전산화 치료계획에 대한 고찰)

  • Yeom, Mi-Suk;Bae, Seong-Soo;Kim, Dae-Sup;Back, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • Purpose: Anisotropic Analytical Algorithm (AAA) provides more accurate dose calculation regarding impact on scatter and tissue inhomogeneity in comparison to Pencil Beam Convolution (PBC) algorithm. This study tries to analyze the difference of dose distribution according to PBC algorithm and dose calculation algorithm of AAA on breast cancer tangential plan. Materials and Methods: Computerized medical care plan using Eclipse treatment planning system (version 8.9, VARIAN, USA) has been established for the 10 breast cancer patients using 6 MV energy of Linac (CL-6EX, VARIAN, USA). After treatment plan of Conventional Radiation Therapy plan (Conventional plan) and Field-in-Field Intensity Modulated Radiation Therapy plan (FiF plan) using PBC algorithm has been established, MU has been fixed, implemented dose calculation after changing it to AAA, and compared and analyzed treatment plan using Dose Volume Histogram (DVH). Results: Firstly, as a result of evaluating PBC algorithm of Conventional plan and the difference according to AAA, the average difference of CI value on target volume has been highly estimated by 0.295 on PBC algorithm and as a result of evaluating dose of lung, $V_{47Gy}$ and $V_{45Gy}$ has been highly evaluated by 5.83% and 4.04% each, Mean dose, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$ has been highly evaluated 0.6%, 0.29%, 6.35%, 10.23% each on AAA. Secondly, in case of FiF plan, the average difference of CI value on target volume has been highly evaluated on PBC algorithm by 0.165, and dose on ipsilateral lung, $V_{47Gy}$, $V_{45Gy}$, Mean dose has been highly evaluated 6.17%, 3.80%, 0.15% each on PBC algorithm, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$ has been highly evaluated 0.14%, 4.07%, 4.35% each on AAA. Conclusion: When calculating with AAA on breast cancer tangential plan, compared to PBC algorithm, Conformity on target volume of Conventional plan, FiF plan has been less evaluated by 0.295, 0.165 each. For the reason that dose of high dose region of ipsilateral lung has been showed little amount, and dose of low dose region has been showed much amount, features according to dose calculation algorithm need to be considered when we evaluate dose for the lungs.

  • PDF

Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm (선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석)

  • Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.

  • PDF

Dosimetric Validation of the Acuros XB Advanced Dose Calculation Algorithm for Volumetric Modulated Arc Therapy Plans

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.180-188
    • /
    • 2016
  • Acuros XB advanced dose calculation algorithm (AXB, Varian Medical Systems, Palo Alto, CA) has been released recently and provided the advantages of speed and accuracy for dose calculation. For clinical use, it is important to investigate the dosimetric performance of AXB compared to the calculation algorithm of the previous version, Anisotropic Analytical Algorithm (AAA, Varian Medical Systems, Palo Alto, CA). Ten volumetric modulated arc therapy (VMAT) plans for each of the following cases were included: head and neck (H&N), prostate, spine, and lung. The spine and lung cases were treated with stereotactic body radiation therapy (SBRT) technique. For all cases, the dose distributions were calculated using AAA and two dose reporting modes in AXB (dose-to-water, $AXB_w$, and dose-to-medium, $AXB_m$) with same plan parameters. For dosimetric evaluation, the dose-volumetric parameters were calculated for each planning target volume (PTV) and interested normal organs. The differences between AAA and AXB were statistically calculated with paired t-test. As a general trend, $AXB_w$ and $AXB_m$ showed dose underestimation as compared with AAA, which did not exceed within -3.5% and -4.5%, respectively. The maximum dose of PTV calculated by $AXB_w$ and $AXB_m$ was tended to be overestimated with the relative dose difference ranged from 1.6% to 4.6% for all cases. The absolute mean values of the relative dose differences were $1.1{\pm}1.2%$ and $2.0{\pm}1.2%$ when comparing between AAA and $AXB_w$, and AAA and $AXB_m$, respectively. For almost dose-volumetric parameters of PTV, the relative dose differences are statistically significant while there are no statistical significance for normal tissues. Both $AXB_w$ and $AXB_m$ was tended to underestimate dose for PTV and normal tissues compared to AAA. For analyzing two dose reporting modes in AXB, the dose distribution calculated by $AXB_w$ was similar to those of AAA when comparing the dose distributions between AAA and $AXB_m$.

Comparison of Anisotropic Analytic Algorithm Plan and Acuros XB Plan for Lung Stereotactic Ablative Radiotherapy Using Flattening Filter-Free Beams (비편평화여과기 빔을 이용한 폐 정위절제방사선치료를 위한 AAA와 Acuros XB 계산 알고리즘의 치료계획 비교)

  • Chung, Jin-Beom;Eom, Keun-Yong;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo;Hong, Semie;Kim, Yon-Lae;Park, Byung-Moon;Kang, Sang-Won;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.210-217
    • /
    • 2014
  • This study investigated the dosimetric effects of different dose calculation algorithm for lung stereotactic ablative radiotherapy (SABR) using flattening filter-free (FFF) beams. A total of 10 patients with lung cancer who were treated with SABR were evaluated. All treatment plans were created using an Acuros XB (AXB) of an Eclipse treatment planning system. An additional plans for comparison of different alagorithm recalcuated with anisotropic analytic algorithm (AAA) algorithm. To address both algorithms, the cumulative dose-volume histogram (DVH) was analyzed for the planning target volume (PTV) and organs at risk (OARs). Technical parameters, such as the computation times and total monitor units (MUs), were also evaluated. A comparison analysis of DVHs from these plans revealed the PTV for AXB estimated a higher maximum dose (5.2%) and lower minimum dose (4.2%) than that of the AAA. The highest dose difference observed 7.06% for the PTV $V_{105%}$. The maximum dose to the lung was also slightly larger in the AXB plans. The percentate volumes of the ipsilateral lung ($V_5$, $V_{10}$, $V_{20}$) receiving 5, 10, and 20 Gy were also larger in AXB plans than for AAA plans. However, these parameters were comparable between both AAA and AXB plans for the contralateral lung. The differences of the maximum dose for the spinal cord and heart were also small. The computation time of AXB plans was 13.7% shorter than that of AAA plans. The average MUs were 3.47% larger for AXB plans than for AAA plans. The results of this study suggest that AXB algorithm can provide advantages such as accurate dose calculations and reduced computation time in lung SABR plan using FFF beams, especially for volumetric modulated arc therapy technique.

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Feasibility Study of Mobius3D for Patient-Specific Quality Assurance in the Volumetric Modulated Arc Therapy

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Lee, Jeongshim;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2019
  • Purpose: This study was designed to evaluate the dosimetric performance of Mobius3D by comparison with an aSi-based electronic portal imaging device (EPID) and Octavius 4D, which are conventionally used for patient-specific prescription dose verification. Methods: The study was conducted using nine patients who were treated by volumetric modulated arc therapy. To evaluate the feasibility of Mobius3D for prescription dose verification, we compared the QA results of Mobius3D to an aSi-based EPID and the Octavius 4D dose verification methods. The first was the comparison of the Mobius3D verification phantom dose, and the second was to gamma index analysis. Results: The percentage differences between the calculated point dose and measurements from a PTW31010 ion chamber were 1.6%±1.3%, 2.0%±0.8%, and 1.2%±1.2%, using collapsed cone convolution, an analytical anisotropic algorithm, and the AcurosXB algorithm respectively. The average difference was found to be 1.6%±0.3%. Additionally, in the case of using the PTW31014 ion chamber, the corresponding results were 2.0%±1.4%, 2.4%±2.1%, and 1.6%±2.5%, showing an average agreement within 2.0%±0.3%. Considering all the criteria, the Mobius3D result showed that the percentage dose difference from the EPID was within 0.46%±0.34% on average, and the percentage dose difference from Octavius 4D was within 3.14%±2.85% on average. Conclusions: We conclude that Mobius3D can be used interchangeably with phantom-based dosimetry systems, which are commonly used as patient-specific prescription dose verification tools, especially under the conditions of 3%/3 mm and 95% pass rate.