• Title/Summary/Keyword: Anisotropic Plasticity

Search Result 112, Processing Time 0.018 seconds

A Study on the free drop impact analysis of the impact limiter for radioactive material transportation cask (방사성물질 운반용기 완충체의 자유낙하 충격 거동에 관한 연구)

  • 박홍윤;신동필;서기석;정성환;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.98-102
    • /
    • 2002
  • As the nuclear power plant has been operated continuously and increased gradually, transportation and storage of spent fuel are seriously considered nowadays. The transportation cask which contains radioactive material needs to be inspected about structural safety. About safety verification, description of IAEA Safety Standards states that cask must withstand hypothetical accident conditions. In this paper, 9m free drop impact analysis was performed for transportation cask and impact limiter by using the finite element methods. Furthermore, we obtained the dynamic behavior of wood to as compared with safety test results, and verified the safety of transportation cask.

  • PDF

Development of finite element analysis program for aluminum alloy sheets (알루미늄 합금 판재 성형성 예측을 위한 유한요소해석 프로그램 개발)

  • Kim S. T.;Moon M. S.;Chung W. J.;Yoon J. W.;Kim Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.291-294
    • /
    • 2005
  • Recently, the usage of aluminum alloy is rapidly increasing in automobile industry to achieve weight reduction for fuel efficiency. However, design of forming process of aluminum is more difficult than steel because of poor formability and severe springback. Since applications of finite element analysis for the design of sheet metal forming process are actively performed, it is required to conduct proper consideration of aluminum material behavior. In this study, a plane stress yield function Yld2000(Yoon et al., 2000), proven to describe well the anisotropic behavior of aluminum alloy, is implemented for FE analysis. One element test is considered to verify the validity of implementation of Yld2000 model. In addition, cylindrical cup drawing test is performed to verify earing shape of a drawn cup.

  • PDF

Constitutive Modeling of AZ31B Magnesium Alloys (AZ31B 마그네슘 합금 판재의 구성식 개발)

  • Lee, M.G.;Chung, K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

Study on the Yield Locus of Aluminum alloy sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Ro, H.C.;Youn, K.T.;Lim, H.T.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.164-167
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compare to the steel sheet can be obstacles in tool manufacturing process. Therefore, much of yield criteria for the anisotropic material such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 model by means of theoretical predictions. Finite element analysis also performed using the proposed method for the real panel.

  • PDF

A study on the mechanical properties of reinforced Nylon66 for glass fiber type and its orientation (나일론66에서 유리섬유의 종류 및 애향에 따른 기계적 물성 연구)

  • Ryu, J.B.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.374-377
    • /
    • 2009
  • Glass fiber reinforced nylon has been used in many plastic industries. Mechanical properties of reinforced plastics depend upon types of glass fiber as well as loading of glass fiber. Tensile properties of glass fiber reinforced nylon66 have been studied for different glass fiber types and sizes. Types of glass fibers were circular and flat, and diameters were 7, 10, and 13 micrometers. Orientations of glass fibers in the matrix of nylon66 have been analyzed through X-ray CT. Tensile specimens were prepared by cutting out of square plates of $100{\times}100{\times}3mm$ with different angles such as 0, 45, and $90^{\circ}$ to the flow direction. As the loading of glass fiber increases to 45 wt% tensile strength increases up 2.5 times compare with neat nylon66. Anisotropic tensile strength has been observed and minimum tensile strength was measured in the specimen cut from perpendicular to the flow direction.

  • PDF

A Prediction of Bursting Failure in Tube Hydroforming Process Based on Necking Conditions (네킹발생조건에 의한 관재 액압성형 공정에서의 터짐 불량 예측)

  • 김상우;김정;박훈재;강범수
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.629-634
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined infernal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity for anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy Parameter, strain hardening exponent and strength coefficient on bursting Pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

An Elasto-Plastic Constitutive Model for the nonlinearity at Small Strain Conditions (미소변형률 조건에서의 비선형성에 대한 탄소성 구성모델)

  • 오세붕;권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • An elasto-plastic constitutive model was Proposed, in which the behavior at small-to-large strain level can be modeled. From a mathematical approach it was proved that the model includes the previous successful models. The experimental results of a series of resonant column tests, torsional shear tests and triaxial tests were verified and as a result the proposed model could predict small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil.

  • PDF

Usefulness and Limiations of Ubiquitous Joint Models (편재절리모델의 유용성과 한계성)

  • ;Ethan M.Dawson
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.202-207
    • /
    • 1997
  • Jointed rock is often modeled using ubiquitious joint models, anisotropic plasticity models with yield condions that simulate slip along joint sets. In this paper, a ubiquitous joint model is derived for a rock mass cut by two sets of continuous joints. The model is used to compute the bearing capacity of a footing resting on jointed rock. Comparison to a series of Distinct Element simulations with different joint spacings, suggests that ubiquitous joint modles are only appropriate when the joint spacing is small.

  • PDF

Damage Evolution and Texture Development During Plate Rolling (판재 압연에서의 결함성장과 집합조직의 발전)

  • 이용신
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.372-378
    • /
    • 2000
  • A process model including the effects of both the texture development and ductile damage evolution In plane strain rolling is presented. In this process model, anisotropy from deformation texture and deterioration of mechanical properties due to growth of micro voids are directly coupled Into the virtual work expressions for the momentum and mass balances. Special treatments in obtaining the initial values of field variables in the nonlinear simultaneous equations for the anisotropic, dilatant viscoplastic deformation are also given. Mutual effects of the texture development and damage evolution during plate rolling are carefully examined in terms of the distribution of strain components, accumulated damage, R-value as well as yield surfaces.

  • PDF

Elasto-Plastic Anisotropic-Damage Model for Concrete (콘크리트의 탄-소성 이방성-손상 모델)

  • 이기성;송하원
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • The initiation and growth of microcracks or microvoids inside concrete results in the progressive degradation of concrete. This damage processing along processing along with plastic deformation is main cause of nonlinear behavior of concrete. In this study, a continuum damage model of concrete is developed for the analysis of the nonlinear behavior of concrete due to damage and elasto-plastic deformation. Anisotropic damage tensor is used to describe the anisotropy of concrete and hypothesis of equivalent elastic energy is used to define the effective elastic tensor. The damage model including the damage evolution law and constitutive equation is derived with damage variable and damage surface which is defined by damage energy release rate by using the Helmholtz free energy and dissipation potential based on the thermodynamic principles. By adopting a typical plasticity model of concrete, plasticity of concrete is included to this model. Afinite element analysis program implemented with this model was developed and finite element analysis was performed for the analyses of concrete subjected to uniaxial and biaxial loadings. Comparison of the results of analysis with those of experiments and other models shows that the model successfully predicts the nonlinear behavior of concrete.

  • PDF