• Title/Summary/Keyword: Animal oil

Search Result 852, Processing Time 0.025 seconds

Determining the Reuse of Frying Oil for Fried Sweet and Sour Pork according to Type of Oil and Frying Time

  • Park, Jung Min;Koh, Jong Ho;Kim, Jin Man
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.785-794
    • /
    • 2020
  • Food Codex regulations have set freshness limits for oils used to fry food, such as potato and fish products, and fried food itself; however, no such freshness limits have been set for meat products, such as sweet and sour pork. The freshness standard suggest that acid values (AVs) and peroxide values (POVs) for frying oil should be less than 2.5 and 50, respectively, whereas AVs and POVs for common fried food should be less than 5.0 and 60, respectively. Therefore, in this study, we investigate the effect of the number of frying cycles on oxidation-promoted changes in the oils used to fry sweet and sour pork and fried food itself during repeated frying over 10 d by determining their AVs and POVs, which were found to be highly correlated. Soybean, canola, palm, and pork lard oils could be reused approximately 37, 32, 58, and 87 times, respectively, to fry sweet and sour pork based on oil freshness, and 78, 78, 81, and 286 times, respectively, based on the freshness of fried food. Our data may help establish food-quality regulations for oils used to fry animal-based foods.

Addition Effect of Seed-associated or Free Linseed Oil on the Formation of cis-9, trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1115-1120
    • /
    • 2002
  • The effects of seed-associated or free linseed oil on fermentation characteristics and long-chain unsaturated fatty acids composition, especially the formation of conjugated linoleic acid (CLA) and octadecenoic acid (trans-11 $C_{18:1}$, $t-C_{18:1}$) by mixed ruminal bacteria were examined in vitro. Concentrate (1% of culture solution, w/v, as-fed basis) with ground linseed (0.6% of culture solution, w/v, DM basis) or linseed oil as absorbed onto ground alfalfa hay was added to 600 ml mixed solution consisting of strained rumen fluid and artificial saliva at the ratio of 1:1 in a glass culture jar. The culture jar was covered with a glass lid with stirrer, and placed into a water-bath ($39^{\circ}C$) and incubated anaerobically up to 24 h. Seed-associated or free linseed oil did not significantly affect the pH and ammonia concentration in the culture solution. Molar percent of acetate tended to increase while that of propionate decreased with the addition of free oil treatment throughout the incubation. Differences in bacterial number were relatively small, regardless of the form of supplements. Decreasing trends in the compositions of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) but increasing trends of stearic acid ($C_{18:0}$), $t-C_{18:1}$ and CLA compositions were found from culture contents up to 12h incubation when incubated with both ground linseed and linseed oil. The compositions of $C_{18:0}$, $C_{18:2}$ and $C_{18:3}$ were greater but those of oleic acid ($C_{18:1}$), $t-C_{18:1}$ and CLA were smaller in a culture solution containing ground linseed than those containing linseed oil. The ratio of $t-C_{18:1}$ to CLA was lower in the culture solutions containing linseed oil up to 12h incubations as compared to those containing ground linseed.

The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages

  • Soycan-Onenc, Sibel;Koc, Fisun;Coskuntuna, Levent;Ozduven, M. Levent;Gumus, Tuncay
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1281-1287
    • /
    • 2015
  • This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen ($NH_3-N$) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The $CO_2$ amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids.

Effects of Dietary Algal Docosahexaenoic Acid Oil Supplementation on Fatty Acid Deposition and Gene Expression in Laying Tsaiya Ducks

  • Cheng, C.H.;Ou, B.R.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1047-1053
    • /
    • 2006
  • The current study was designed to determine the effects of dietary docosahexaenoic acid (DHA) on fatty acid deposition in egg yolk and various tissues of laying Tsaiya ducks, and on the mRNA concentrations of hepatic lipogenesis-related transcription factors. Thirty laying ducks were randomly assigned to three treatments with diets based on corn-soybean meal (ME: 2803 kcal/kg; CP: 17.1%; Ca: 3.4%) supplemented with 0% (control diet), 0.5% or 2% algal DHA oil. The DHA content in egg yolks of the ducks was elevated significantly (p<0.01) with the supplementation of dietary DHA. The DHA percentage of the total fatty acids in the egg yolk of laying ducks was 0.5%, 1.3% and 3.4% for 0%, 0.5% and 2% algal DHA oil treatments, respectively, for the $1^{st}$ week, and 0.5%, 1.5% and 3.3% for the $2^{nd}$ week. Therefore, algal DHA oil can be utilized by laying Tsaiya ducks to enhance the egg-yolk DHA content. The concentrations of triacylglycerol (TG) and cholesterol in plasma of laying Tsaiya ducks were not affected by dietary DHA treatments (p>0.05). The DHA concentration in plasma, liver, and skeletal muscle was increased with the addition of dietary algal DHA oil (p<0.05). The mRNA abundance of sterol regulatory element binding protein 1 (SREBP1) and SREBP2 in the livers of laying Tsaiya ducks was not affected by dietary DHA, suggesting that the expression of these transcription factors is tightly controlled and not sensitive to DHA treatments.

Functional Properties of Cholesterol-removed Compound Whipping Cream by Palm Oil

  • Shim, S.Y.;Ahn, J.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.857-862
    • /
    • 2004
  • The present study was carried out to examine the changes in functional properties of cholesterol-removed compound whipping cream made by $\beta$-CD treated cream and palm oil. Six different ratios of cream to palm oil (10:0 as control, 9:1, 8:2, 7:3, 6:4, and 5:5, v/v) were tested. The overrun percentage increased with an increased amount of palm oil. When the ratio of cream to palm oil was 10:0 (control), the overrun was 130%, which was significantly lower than other ratios reached to 150%. Foam instability was measured as 3.1 ml defoamed cream in control, however, the value of foam instability decreased with an increase of palm oil addition. The TBA value of cholesterol-removed compound whipping cream increased from 0.08 to 0.13 with no addition of palm oil during 4 wk storage. When the ratio of cream to palm oil was 5:5, TBA value increased dramatically at 3 wk and thereafter. Among sensory characteristics, texture value increased with higher amount of palm oil, however, flavor and overall preferences were opposite. Above results indicated that partial substitution of palm oil in manufacture of cholesterol-removed compound whipping cream resulted in a stable foam development with little adverse effect on flavor and lipid oxidation during storage. The present study showed a possible application in manufacture of cholesterol-removed compound whipping cream, which may be effective in other foods.

A Study on the Storage Stability and Malodor of Bio-Fuel oil (바이오중유의 저장안정성 및 악취특성 연구)

  • JANG, EUN-JUNG;PARK, CHEON-KYU;LEE, BONG-HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.712-720
    • /
    • 2017
  • As Korean government has activated the renewable portfolio standard (RPS) since 2012, producers have been seeking and using the various renewable resources to meet the RPS quota. One of these efforts, Power Bio-Fuel oil demonstration project is being conducted to check the operability and compatibility with fossil fuel, Fuel oil (B-C) from 2014. The oil is a mixture of vegetable oil and animal fat or fatty acid ester of them and should satisfy some specification to use the power generation. The oil's quality and combustion characteristics are different from conventional oil, Fuel oil (B-C) in current power plant facility. In this study, it was investigated the storage stability and malodor intensity of Bio-Fuel oil.

Effect of Fish Oil Supplement on Growth Performance, Ruminal Metabolism and Fatty Acid Composition of Longissimus Muscle in Korean Cattle

  • Kook, K.;Choi, B.H.;Sun, S.S.;Garcia, Fernando;Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2002
  • We investigated the effect of fish oil (FOS) on growth performance, ruminal metabolism and fatty acid composition and physical characteristics of longissimus muscle in 10 steers and 10 bulls of Korean cattle. Concentrates diet was supplemented with FOS at 5% of the diet. FOS contained 3.34% eicosapentaenoic acid (EPA) and 24.87% docosahexaenoic acid (DHA) of total fatty acids by weight. Average daily weight gain and feed efficiency were not affected (p>0.871) by FOS, but feed intake was decreased. FOS had lower (p<0.003) pH and higher (p<0.001) $NH_3$-N than that of control. There was a treatment effect (p<0.001) for serum cholesterol concentrations. FOS increased (p<0.009) concentrations of n-3 fatty acids, including linolenic, EPA and DHA in longissimus muscle. Physical traits were significantly (p<0.015) changed by feeding FOS except for pH and lightness (L). We concluded that the fatty acid composition and physical properties of the muscle in fattening Korean cattle can be altered by feeding 5% FOS.

Changes in expression of insulin signaling pathway genes by dietary fat source in growing-finishing pigs

  • Kim, Seung-Chang;Jang, Hong-Chul;Lee, Sung-Dae;Jung, Hyun-Jung;Park, Jun-Cheol;Lee, Seung-Hwan;Kim, Tae-Hun;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.56 no.4
    • /
    • pp.12.1-12.7
    • /
    • 2014
  • This study investigated changes in gene expression by dietary fat source, i.e., beef tallow, soybean oil, olive oil, and coconut oil (each 3% in feed), in both male and female growing-finishing pigs. Real-time PCR was conducted on seven genes (insulin receptor; INSR, insulin receptor substrate; IRS, phosphatidylinositol (3,4,5)-triphosphate; PIP3, 3-phosphoinositide-dependent protein kinase-1; PDK1, protein kinase B; Akt, forkhead box protein O1; FOXO1 and cGMP-inhibited 3', 5'-cyclic phosphodiesterase; PDE3) located upstream of the insulin signaling pathway in the longissimus dorsi muscle (LM) of pigs. The INSR, IRS, PIP3, and PDE3 genes showed significantly differential expression in barrow pigs. Expression of the PIP3 and FOXO1 genes was significantly different among the four dietary groups in gilt pigs. In particular, the PIP3 gene showed the opposite expression pattern between barrow and gilt pigs. These results show that dietary fat source affected patterns of gene expression according to animal gender. Further, the results indicate that the type of dietary fat affects insulin signaling-related gene expression in the LM of pigs. These results can be applied to livestock production by promoting the use of discriminatory feed supplies.

Effects of Fish Oil Supplementation on Growth Performance, Fatty Acid Composition of Longissimus Muscle and Carcass Characteristics in Hanwoo Steers (Fish Oil의 첨가가 한우 거세우의 육성성적, 배최장근의 지방산 조성 및 도체특성에 미치는 영향)

  • Park, B.K.;Shin, J.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • Twenty Hanwoo steers (average body weight=440.8±32.4kg) were used to investigate the effects of fish oil supplementation on growth performance, fatty acid composition of longissimus muscle and carcass characteristics. The experiment was done with two treatment groups; FO-0, without fish oil and FO-3, supplemented with 3% fish oil. Total gain and average daily gain (ADG) of steers were similar between two groups. Fish oil supplementation had no effects on contents of protein, ether extract and ash in longissimus muscle. Contents of isoleucine and glycine in longissimus muscle were decreased by fish oil supplementation (p<0.05), but content of cystein was increased by fish oil supplementation (p<0.05). Fish oil supplementation decreased contents of myristic acid and eicosenoic acid in longissimus muscle (p<0.05), but increased contents of oleic acid and arachidonic acid in longissimus muscle (p<0.05). Contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in longissimus muscle were increased by fish oil supplementation p<0.05). Carcass weight, back fat thickness, rib-eye area, yield index and yield grade were similar between two groups. Meat color was improved by fish oil supplementation (p<0.05), Ratio of quality grade ‘1 or over’ increased by fish oil supplementation. Therefore, the present study indicating that fish oil supplementation had positive effects on content of oleic acids in relation to flavor of beef, contents of EPA and DHA in relation to human health and ratio of quality grade ‘1 or over’.

Effect of Conjugated Linoleic Acid on Intestinal and Hepatic Antioxidant Enzyme Activity and Lipid Peroxidation in Broiler Chickens

  • Ko, Y.H.;Yang, H.Y.;Jang, I.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1162-1167
    • /
    • 2004
  • The present study was designed to define whether dietary conjugated linoleic acid (CLA) could affect antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione S transferase (GST), and the level of malondialdehyde (MDA), a marker of lipid peroxidation, in the small intestine and liver from broiler chickens. A total of twenty-four 3 wk-old male broiler chickens were assigned to three dietary treatments (1.5% corn oil, 0.75% corn oil plus 0.75% CLA, and 1.5% CLA, isocalorically), and fed a grower-finisher diet from 22 to 35 days. In the small intestinal mucosae, the specific activities of SOD, GSH-Px, CAT, and GST, and the level of MDA were not substantially influenced by dietary CLA. In the liver, the specific activities of SOD, GSH-Px, and GST, and the level of MDA were also unaffected by dietary CLA at the level of either 0.75% or 1.5% compared with corn oil at the level of 1.5%. However, the broiler chickens fed the diet containing 1.5% CLA resulted in a significant increase in peroxisomal CAT activity and a marked decrease in total lipid and non-esterified fatty acids (NEFA) from liver tissues compared with those fed the diet containing 1.5% corn oil. In conclusion, ability of CLA to increase hepatic CAT activity suggest that dietary CLA may affect, at least in part, antioxidant defense system as well as lipid metabolism in the liver of broiler chickens.