• Title/Summary/Keyword: Animal Manure

Search Result 583, Processing Time 0.03 seconds

Nutrient production from dairy cattle manure and loading on arable land

  • Won, Seunggun;Shim, Soo-Min;You, Byung-Gu;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods: Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (${\Delta}P=0$). Results: The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion: As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

Change of Heating Value of Cow Manure According to Pre-treatment (전처리 방법 적용에 의한 우분의 열량값 변화)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Lee, Dong-Hyun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.63-73
    • /
    • 2015
  • This study was carried out to evaluate the change of heating value of cow manure by applying pre-treatment process. Three types of treatment precess; Composting, Dry anaerobic digestion and Physical compression were applied as a pre-treatment method. Composting and anaerobic digestion of cow manure were cause of caloric value reduction of the cow manure. The heating value of cured compost was 5% lower than that of initial composting material. The heating value of dry anaerobic digestion residue was 25.7% lower than that of fresh cow manure. By physical compression of cow manure, heating value and VS/TS ratio (Volatile solids/Total solids ratio) of compressed cow manure were higher than that of fresh cow manure. On the other hand, heating value and VS/TS ratio of leachate generated by compression process were lower than those of fresh cow manure.

Effects of Animal Excreta Classification and Nitrogen Fertilizing Level on Productivity of Pasture Plants and Improvement of Soil Fertility in Mixed Grassland (혼파초지에서 가축분뇨의 종류와 시용수준이 목초의 생산성 및 지력증진에 미치는 영향)

  • 육완방;최기춘
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • To establish the recycling system of animal manure(AM) for environmental preservation and improve the utilization of AM, this study was to investigate the effects of the types and nitrogen application rate of AM on herbage productivity, efficiency of nitrogen utilization, nutritive value and an increase of soil fertility and in mixed grassland. This sudy was arranged in split plot design. Main plots were the types of AM(Cattle feedlot manure, CFM; Pig manure fermented with sawdust, PMFS; cattle sluny, CS) and subplots were the application rate of animal manure, such as 100, 200 and 300kgNiha. I. DM yields of herbage were the highest with CS and decreased by application over ZOOkgNiha AM. 2. Crude protein(CP) ontent was the highest with CFM and followed by CS, and the lowest with PMFS, and increased as application rate of AM increased. 3. Nitrogen(N) yields of CS treatment was higher than that of CFM and CS. and increased significantly as application rate of AM increased(P<0.05). 4. The contents of NDF, ADF and TDN was hardly influenced by the types and application rate of AM. 5. Organic matter(0M) content in the soil was the highest with PMFS and followed by CFM and the lowest with CS. OM content increased significantly as application rate of AM increased(P<0.05). 6. Total nitrogen content of the soil was not affected by the type of AM, but increased significantly as application rate of AM increased(P<0.05). (Key words : Animal manure, Grassland, Cattle feedlot manure, Pig manure fermented with sawdust, Cattle slurry, Soil fertility)

  • PDF

Investigation of Hanwoo manure management and estimation of nutrient loading coefficients on land application

  • Won, Seunggun;You, Byung-Gu;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.57 no.5
    • /
    • pp.20.1-20.8
    • /
    • 2015
  • Background: In order to prepare for the regulation about the limit of manure production, the status of manure management and the amount of nutrients in the compost discharged from Hanwoo breeding farm shall be known. This study aimed to find the practical amount of nutrients (volatile solids, VS; total nitrogen, T-N; total phosphorus, T-P) in manure, and compost samples collected from 40 Hanwoo breeding farms and the loss of the nutrients was calculated during the composting period, which supports to develop nutrient loading coefficients (NLCs) for each nutrient. Results: Although the addition of bedding materials for composting caused the increase of the VS amount before composting, the comparison of VS, N, and P amounts in between manure and compost showed the lower VS by 4 % as well as T-N and T-P amounts by 69 and 40 %, respectively, of which values were corresponded with the NLCs of 0.96, 0.31, and 0.60 for VS, N, and P, respectively, based on the questionnaire, and sample analyses. Considering with the environmental impacts including land application from Hanwoo manure, P loss should be zero before and after composting. In this regard, nitrogen loss of 50 % occurs and VS was increased by 30 %. In addition, feasible cases for the calculations based on the notification from Ministry of Environment were compared with this study. Conclusions: The development of NLCs from Hanwoo manure in this study implies that the loss of nutrients in manure occurs during the composting or storing period. The mass balances of N and P from livestock manure to land application may be overestimated over the practical values. It is necessary to build up the database about each livestock category other than Hanwoo.

Measurement of greenhouse gas emissions from a dairy cattle barn in Korea

  • Eska Nugrahaeningtyas;So-Hee Jeong;Eliza Novianty;Mohammad Ataallahi;Geun Woo Park;Kyu-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.459-472
    • /
    • 2023
  • Korea is currently developing country-specific emission factors to support the 2050 zero-carbon campaign. Dairy cattle represent one of the largest livestock industries in Korea, and the industry is estimated to continue increasing because of an increase in milk demand. However, country-specific emission factors for dairy cattle are currently only available for calculating methane (CH4) emissions from enteric fermentation. Two experiments were conducted to evaluate CH4 and nitrous oxide (N2O) fluxes from sawdust-bedded barn in dairy cow and steer, as well as dairy cattle manure composting lots. The greenhouse gas (GHG) fluxes were quantified using the open-chamber method and gas chromatography. CH4 fluxes from steer, dairy cow, and manure compost were 27.88 ± 5.84, 36.12 ± 10.85, and 259.44 ± 61.78 ㎍/head/s, respectively. N2O fluxes from steer, dairy cow, and manure compost were 14.04 ± 1.27, 4.11 ± 1.57, and 3.97 ± 1.08 ㎍/head/s, respectively. The result of this study can be used to construct country-specific data for GHG emissions from manure management. Thus, the application of mitigation strategies can be prioritized based on the GHG profile and targeted source.

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Effects of Functional Ingredients Supplementation as a Bulking Agent in Composting of Swine Manure (돈분의 퇴비화에 있어 악취 제거 기능성 물질의 첨가 효과)

  • 이상환;김인호;홍종욱;권오석;김정우
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.4
    • /
    • pp.113-121
    • /
    • 2001
  • This study was conducted to evaluate the effects of functional ingredients with supplementation as a bulking agent in composting of swine manure. Treatments were T1 & T5 ; Swine mature+Vermiculite, T2 & T6 ; Swine manure+Perlite, T3 & T7 ; Swine manure+Vermiculite+Perlite, T4 & T8 ; Swine manure+Bark. T1, T2, T3 and T4 were supplemented with functional ingredients on d 0 of composting, T5, T6, T7 and T8 were supplemented with functional ingredients on d 3 of composting. Functional ingredients were Fermkito and Yucca. During the composting period, changes of temperature were showed traditionally composting trend. Volatile fatty acids were decreased regardless of treatments in functional ingredients supplementation. Organic matter, T-N and C/N ratio were showed higher bark treatments than other treatments. pH and EC were net differences among the treatments. P$_2$O$_{5}$ and $K_2$O were showed level of 1-3%. In heavy metal, Cr were showed higher in vermiculite treatment than other treatments. In conclusion, vermiculite and perlite treatments were greater composting effects than bark.

  • PDF

Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts (축산분뇨 농지환원을 위한 적정관리방안)

  • 홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.

Comparison of microbial communities in swine manure at various temperatures and storage times

  • Lim, Joung-Soo;Yang, Seung Hak;Kim, Bong-Soo;Lee, Eun Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1373-1380
    • /
    • 2018
  • Objective: This study was designed to investigate the effects of temperature and storage time on the evolution of bacterial communities in swine manure. Methods: Manure was stored at $-20^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $37^{\circ}C$ and sampled at 7-day intervals over 28 days of storage, for a total of 5 time points. To assess the bacterial species present, 16S ribosomal RNA gene sequences were analyzed using pyrosequencing. Results: After normalization, 113,934 sequence reads were obtained, with an average length of $466.6{\pm}4.4bp$. The diversity indices of the communities reduced as temperature and storage time increased, and the slopes of rarefaction curves decreased from the second week in samples stored at $-20^{\circ}C$ and $4^{\circ}C$. These results indicate that the richness of the bacterial community in the manure reduced as temperature and storage time increased. Firmicutes were the dominant phylum in all samples examined, ranging from 89.3% to 98.8% of total reads, followed by Actinobacteria, which accounted for 0.6% to 7.9%. A change in community composition was observed in samples stored at $37^{\circ}C$ during the first 7 days, indicating that temperature plays an important role in determining the microbiota of swine manure. Clostridium, Turicibacter, Streptococcus, and Lactobacillus within Firmicutes, and Corynebacterium within Actinobacteria were the most dominant genera in fresh manure and all stored samples. Conclusion: Based on our findings, we propose Clostridium as an indicator genus of swine manure decomposition in an anaerobic environment. The proportions of dominant genera changed in samples stored at $20^{\circ}C$ and $37^{\circ}C$ during the fourth week. Based on these results, it was concluded that the microbial communities of swine manure change rapidly as storage time and temperature increase.

Effect of Industrial Wastes as a Bulking Agent on the Composting of Swine Manure (산업폐기물의 수분조절재 대체가 양돈분뇨의 퇴비화에 미치는 영향)

  • 김두환
    • Journal of Animal Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • Composting has recently become popular as a means of recycling swine manure into products for sale off the farm, but bulking agent(usually sawdust) are expensive and availability is limited. This experiment was conducted to investigate the effect of fly ash as a bulking agent on the composting of swine manure and to analyze the effective substitution rate of fly ash mixed with swine manure for sawdust. Fly ash was able to be substituted for sawdust and the most effective substitution rate are 50% of sawdust. According to the results the advanced research and development are required, the effect of swine manure with fly ash on the soil properties, forage composition and animal performance.