• Title/Summary/Keyword: Angular sensor

Search Result 236, Processing Time 0.025 seconds

A Study on Position Detection in Gears in Automatic Production of Geared Shaft (기어의 생산자동화를 위한 기어의 위치정보 검출에 관한 연구)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2223-2228
    • /
    • 2014
  • Available shafts with gears at each end of the cylinder-shaped steel are widely used as power train components for automobiles. In order to automate the production of a geared shaft, there are problems to be solved. After one side of the cylinder is cut in gears, one of the problems is to determine the position of the cylinder which has been already cut. The shaft is then to be fed ahead with geared position to the chuck with jaws in geared shape. The other problem is to acquire information on an angular position of the shaft to fit to the jaws of the chuck. This paper deals with the magnetic detection sensor of gear position. Coils are installed in two places. Self-inductances of coils are detected by the changes of reluctance and are then compared. The magnetic analysis also has been carried out by the finite element analysis (FEM).

The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model (관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법)

  • Park, ByungSu;Han, KyungJun;Lee, SangWoo;Yu, MyeongJong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.438-445
    • /
    • 2019
  • In this paper, we present a new approach to extract the g-sensitivity scale-factor error for a MEMS gyroscope. MEMS gyroscopes, based on the use of both angular momentum and the Coriolis effect, have a g-sensitivity error due to mass unbalance. Generally, the g-sensitivity error is not considered in general use of gyroscopes, but it deserves our attention if we are to develop for tactical class performance and reliability. The g-sensitivity error during vehicle flight increases navigation error; so it must be analyzed and compensated for the use of MEMS IMU for high dynamics vehicle systems. Therefore, we analyzed how to extract the g-sensitivity scale-factor error from the inertial sensor error model. Furthermore we propose a new method to extract the g-sensitivity error using flight motion simulator. We verified our proposed method with experimental results.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Implementation and Validation of Earth Acquisition Algorithm for Communication, Ocean and Meteorological Satellite

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Lee, Un-Seob
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.345-354
    • /
    • 2011
  • Earth acquisition is to solve when earth can be visible from satellite after Sun acquisition during launch and early operation period or on-station satellite anomaly. In this paper, the algorithm and test result of the Communication, Ocean and Meteorological Satellite (COMS) Earth acquisition are presented in case of on-station satellite anomaly status. The algorithms for the calculation of Earth-pointing attitude control parameters including those attitude direction vector, rotation matrix, and maneuver time and duration are based on COMS configuration (Eurostar 3000 bus). The coordinate system uses the reference initial frame. The constraint calculating available time-slot to perform the earth acquisition considers eclipse, angular separation, solar local time, and infra-red earth sensor blinding conditions. The results of Electronics and Telecommunications Research Institute (ETRI) are compared with that of the Astrium software to validate the implemented ETRI software.

Self-localization of a Mobile Robot for Decreasing the Error and VRML Image Overlay (오차 감소를 위한 이동로봇 Self-Localization과 VRML 영상오버레이 기법)

  • Kwon Bang-Hyun;Shon Eun-Ho;Kim Young-Chul;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.389-394
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

A Fuzzy Control of Autonomous Mobile Robot for Obstacle Avoidance (장애물 회피를 위한 자율이동로봇의 퍼지제어)

  • Chae Moon-Seok;Jung Tae-Young;Kang Suk-Bum;Yang Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1718-1726
    • /
    • 2006
  • In this paper, we proposed a fuzzy controller and algorithm for efficiently obstacle avoidance in unknown space. The ultrasonic sensor is used for position and distance recognition of obstacle, and fuzzy controller is used for left and right wheels angular velocity control. The fuzzification is used singleton method and the control rule is each wheel forty-nine. The fuzzy inference is used simplified Mamdani's reasoning and defuzzification is used SCOG(Simplified Center Of Gravity). The computer simulation based on mobile robot modelling was performed for the capacity of fuzzy controller and the really applicable possibility revaluation of the proposed avoidance algorithm and fuzzy controller. As a result, mobile robot was exactly reached in target and it avoided obstacle efficiently.

VRML image overlay method for Robot's Self-Localization (VRML 영상오버레이기법을 이용한 로봇의 Self-Localization)

  • Sohn, Eun-Ho;Kwon, Bang-Hyun;Kim, Young-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.318-320
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localitzation technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

  • PDF

Anti-Swing Control Algorithm for the Automation of Overhead Crane (천정크레인 설비의 자동화를 위한 반진동 제어 알고리즘)

  • 배상욱;노철균;배영호;이득기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2003
  • In this paper, is proposed an anti-swing control algorithm for the automation of overhead crane. The algorithm consists of three parts, the FCL with compensatory FLC which generates acceleration, velocity and position reference to reduce swing angle and acceleration feedback controller which feedback control errors. Especially the algorithm dose not need angular sensor which detect swing angle of payload and requires high cost. By the simulation study and experiment with prototype crane, we showed the usefulness of the proposed algorithm.

A Consecutive Motion and Situation Recognition Mechanism to Detect a Vulnerable Condition Based on Android Smartphone

  • Choi, Hoan-Suk;Lee, Gyu Myoung;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.16 no.3
    • /
    • pp.1-17
    • /
    • 2020
  • Human motion recognition is essential for user-centric services such as surveillance-based security, elderly condition monitoring, exercise tracking, daily calories expend analysis, etc. It is typically based on the movement data analysis such as the acceleration and angular velocity of a target user. The existing motion recognition studies are only intended to measure the basic information (e.g., user's stride, number of steps, speed) or to recognize single motion (e.g., sitting, running, walking). Thus, a new mechanism is required to identify the transition of single motions for assessing a user's consecutive motion more accurately as well as recognizing the user's body and surrounding situations arising from the motion. Thus, in this paper, we collect the human movement data through Android smartphones in real time for five targeting single motions and propose a mechanism to recognize a consecutive motion including transitions among various motions and an occurred situation, with the state transition model to check if a vulnerable (life-threatening) condition, especially for the elderly, has occurred or not. Through implementation and experiments, we demonstrate that the proposed mechanism recognizes a consecutive motion and a user's situation accurately and quickly. As a result of the recognition experiment about mix sequence likened to daily motion, the proposed adoptive weighting method showed 4% (Holding time=15 sec), 88% (30 sec), 6.5% (60 sec) improvements compared to static method.