• Title/Summary/Keyword: Angular kinematic

Search Result 173, Processing Time 0.024 seconds

Kinematic Study of Lower Extremity Movements in Unskilled and Expert Snowboarders During Snowboard Simulator Exercises (스노보드 시뮬레이터 운동 시 전문가와 비전문가의 하지 운동특성 분석)

  • Park, Sunwoo;Ahn, Soonjae;Kim, Jongman;Shin, Isu;Choi, Eunkyoung;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.109-114
    • /
    • 2015
  • In this study, joint angles of the lower extremity and tibial acceleration and angular velocity were measured during a snowboard simulator exercises in order to evaluate the skill of snowboarders. Ten unskilled and ten expert snowboarders were recruited for the study. A three-dimensional motion capture system and two inertial sensor modules were used to acquire joint movements, acceleration and angular velocity of the lower extremities during snowboard simulator exercises. Pattern variations were calculated to assess variations in the snowboard simulator motion of unskilled and expert snowboarders. Results showed that expert snowboarders showed greater range of motion in joint angles and greater peak to peak amplitude in acceleration and angular velocity for tibia than unskilled snowboarders. The unskilled snowboarders did not show symmetrical shape(same magnitude but opposite direction) in tibial angular velocity during two edge turns in snowboard simulator exercises. The expert snowboarders showed smaller pattern variations for joint angle of lower extremity, tibial acceleration and tibial angular velocity than unskilled snowboarders. Inertial sensor data and pattern variations during the snowboard simulator exercises could be useful to evaluate the skill of snowboarders.

Kinematic Analysis of Lower Extremity and Evaluation of Skill of Skier Using Parameters of Inertial Sensors During Ski Simulator Exercise (스키 시뮬레이터 운동 시 하지 운동특성 분석 및 관성센서 파라미터를 이용한 스키 숙련도 평가)

  • Kim, Jungyoon;Ahn, Soonjae;Park, Sunwoo;Shin, Isu;Kim, Gyoosuk;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • In this study, joint angles of the lower extremity and inertial sensor data such as accelerations and angular velocities were measured during a ski simulator exercise in order to evaluate the skill of skiers. Twenty experts and twenty unskilled skiers were recruited for the study. All expert skiers held the certificates issued by the Korea Ski Instructors Association. A three-dimensional motion capture system and two inertial sensors were used to acquire joint movements, heel acceleration and heel angular velocity during ski simulator exercises. Pattern variation values were calculated to assess the variations in ski simulator motion of expert and unskilled skiers. Integral ratio of roll angular velocity was calculated to determine the parallel alignment of the two feet. Results showed that ski experts showed greater range of motion of joint angle, peak-to-peak amplitude(PPA) of heel acceleration and PPA of heel angular velocity than unskilled skiers. Ski experts showed smaller pattern variations than unskilled skiers. In addition, the integral ratio of roll angular velocity in ski experts was closer to 1. Inertial sensor data measurements during the ski simulator exercises could be useful to evaluate the skill of the skier.

A three-dimensional kinematic analysis of the field goal kicking motion in American football (미식축구의 필드골(Field Goal) 킥(Kick)에 대한 운동학적 분석)

  • Ahn, Chan-Gyu;Kim, Ky-Hyung;Choi, Seung-Bang
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.139-153
    • /
    • 2003
  • The purpose of the study was to present technical guidance about the field goal kicking motion in American football for novices. For this purpose, kinematic analysis on the field goal kicking motion of two skilled players and two unskilled players was carried out. The following conclusions were made: 1. In comparison on the total elapsed time of the kicking, there were no significant differences between two groups. The progressing time from BP event to impact among experts group, however, took 0.141 second less than that of novices group. 2. The experts group showed right hip rotatier horizontally toward the targeted ball fixing left hip as the axis. On the other hand, the novices group didn't use the left hip as the axis in the kicking motion. 3. At the impact of kicking the ball, regarding with the distance of the ball and the supporting leg, the right and left distance of experts was 3.45cm longer than that of novices, the front and the rear distance of experts was 5.14cm shorter than novices. 4. At the impact, experts' initial velocity of the targeted ball was $5.27^m/s$ faster than novices', besides experts' incidence angular displacement was $3.78^{\circ}$ larger than novices'. 5. After BP event, experts showed a stable movement maintaining flexion and extension at left hip joint and knee joint. On the other hand, for novices, the angle of the left lower extremities became larger. 6. Experts showed the efficient flexion and extension of the hip joint and the knee joint during following procedure in the whole event of the kicking motion. At the BP event, the right knee joint angle of novices was $11.46^{\circ}$ larger than that of experts. However, the duration of the impact event and FT event among, novices had less extension of knee joint than experts. 7. At the 2nd phase, for both of the groups, the angular velocity of the knee joint drastically increased as the angular velocity of hip joint decreased. However, only novices showed the largest negative angular velocity at the impact.

The Effect of Upper Extremity Usage on the Soccer Instep Kick Motion (축구 인스텝 킥 시 상지의 이용 유무가 하지의 운동학적 변인에 미치는 영향)

  • Chae, Woen-Sik;Kang, Nyeon-Ju;Kim, Jong-Woo;Yun, Chang-Jin;Chae, Su-Duk;Seok, Chang-Huk;Park, Gi-Yong;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • The purpose of this study was to evaluate the kinematic effect of upper extremity usage for the scoccer instep kick motion. Ten male university students were recruited as the subjects. Temporal parameters, ball velocity, velocity of CG, angle of segment, angular velocity, and trunk orientation angle were determined for each trial. The results showed that temporal parameters in WU and WORU were significantly less than those found in WOU during pre impact phase. These indicated that no usage of upper extremity may increase excessive setup time in order to improve the accuracy of instep kick. Angle of right knee in WOU at LC was significantly greater than corresponding value for WU since angular momentum contributions of the lower limb were not effectively balanced by contributions of the upper limb. We found that the lower extremity movement was controlled by lateral movement in the trunk as a result of no usage of the upper extremity, resulting in the relatively greater trunk rotation in WOU.

Kinematic Analysis of Elite Athletes in Men's Shot-Put at World Championships, Daegu 2011 (2011 대구세계육상선수권대회 남자 포환던지기 결선경기의 운동학적 분석)

  • Oh, Cheong-Hwan;Shin, Eui-Su;Choi, Su-Nam;Jeong, Ik-Su;Bae, Jae-Hee;Lee, Jeong-Tea;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.631-638
    • /
    • 2011
  • This study had two purposes. The first was to analyze the period of the final record set by the male shot-putters in the IAAF World Championships, Daegu 2011 from the point of view of kinematics. The other was to identify an efficient movement for shot putting based on the analysis. The research used the eight finalists of in the championship as subjects. We analyzed the seven most important kinematic factors in shot putting based on the type of technique: the execution time of the delivery phase, release velocity, release angle, release, center of mass (COM) velocity, and shot trajectories. The analytical results showed the following average figures for the record 12 meters: execution time of the delivery phase: (0.19 s), release height: (2.06 m), release angle: ($34.68^{\circ}$), release velocity: (13.25 m/s), angular velocity of shoulder: ($922.38^{\circ}/s$), and angular velocity of pelvis: ($479.50^{\circ}/s$). Further, the results showed that the highest COM velocity was 2.25 m/s and the shot trajectories were close to a straight line in the release phase.

Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running (달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

The Effect of Smartphone Holding Techniques on Kinematic Variables and Muscle Activities in the Thumb during Tapping Numbers (휴대전화 파지방법이 엄지손가락의 운동학적 변인과 근활성도에 미치는 영향)

  • Kim, Dong-Soo;Chae, Woen-Sik;Jung, Jae-Hu;Lee, Haeng-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.301-308
    • /
    • 2014
  • The purpose of this study was to determine whether there are significant differences in kinematic variables and muscle activities of the thumb between two smartphone holding techniques. Twelve right handed university students(age $25.4{\pm}3.9yrs$, height $176.2{\pm}5.1cm$, weight $75.8{\pm}11.4kg$, hand length $19.2{\pm}1.1cm$) who have no musculoskeletal disorder were recruited as the subjects and had experience in using a smartphone for more than one year. Maximum joint angle, angular velocity, muscular activities were determined for each trial. For each dependent variable, paired t-test was used to determine whether there were significant differences between one hand (OH) and two hands ([TH], ${\rho}$ <.05). The results of this study showed that there were no significant differences between OH and TH in the maximum joint angle of the thumb. The angular velocity of each joint was not statistically significant between OH and TH. The statistical analysis revealed that the main effect of the smartphone holding conditions was significant in the peak normalized muscular activities of FDI and APL. Although smartphone holding technique doesn't affect on mobility and movement of the thumb joint, it may affect on active degree of the thumb and the upper extremity in directly and indirectly.

The usage of convergency technology for ROGA algorithm application on step walking of biped robot (이족 로봇의 계단 보행에서 Real-Coded Genetic Algorithm 의 융합 기술의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.175-182
    • /
    • 2020
  • The calculation of the optimal trajectory of the stepped top-down robot was made using a genetic algorithm and a computational torque controller. First, the total energy efficiency was minimized using the Red-Cold Generic Algorithm (RCGA) consisting of reproductive, cross, and mutation. The reproducibility condition related to the position assembly of the start and end of the stride and the joints, angles, and angular velocities are linear constraints. Next, the unequal constraint accompanies the condition for preventing the collision of the swing leg at the corner with the outer surface of the stairs, the condition of the knee joint for preventing kinematic peculiarity, and the condition of no moment in safety in the traveling direction. Finally, the angular trajectory of each joint is defined by fourth-order polynomial whose coefficient is to approximate chromosomes. This is to approximate walking. In this study, the energy efficiency of the optimal trajectory was analyzed by computer simulation through a biped robot with seven degrees of freedom composed of seven links.

Analysis on the Walking Volumes of a Hexapod System with General 3R Link Legs (일반적 3R 링크를 갖는 6각 보행로봇 다리의 보행체적에 대한 해석)

  • Han, Gyu-Beom;Yang, Chang-Il;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2205-2212
    • /
    • 1996
  • In order to move the body of a walking robot translationally, and step over the obstacles, the walking robot must have at least 3 degrees of freedom for each leg. Therefore each leg of the general walking robots can be composed of 3-link system with 3 revolute joints. In this paper, the colsed form of inverse kinimatic solutions is shown for this general 3R linkage. Moreover, in order to have efficient walking volume in rough terrain, the workspace of each log is obtained considering the twist angles and the offsets in D-H parameters. When we design a walking robot, the information of the walking volume is needed for planning desired trajectories of the feet effectively. Appropriate knowledge of the walking volume can also be used to maximize linear or angular velocity of minimize power of stress. However, since it is impossible to obrain the information of walking volume in 3-D space directly from the kinematic equations, the walking volume can be searched through the edge detection algorithm using the triangle tracer with closed from inverse kinematic solutions. In this study, we present the closed form inverse kinematic solutions for 3R linkage model, and the walking volume of 6 legged walking robot which is modeled after the darking bettle, Eleodes obscura sulcipennis, through the method of edge detection for an arbitrary 2 dimensional shape using triangle tracer.