Journal of Korean Tunnelling and Underground Space Association
/
v.23
no.6
/
pp.485-502
/
2021
In order to evaluate the impact of ground subsidence and superstructures that are inevitably caused by tunnel excavation, a total of seven major influencing factors of surface subsidence and structural soundness reduction were set, and a Parameter Study using numerical analysis was conducted. Stability analysis was performed using scheme of Boscardin and Cording method and the maximum subsidence amount and the angular displacement, and correlation analysis was performed for each major influencing factor. In addition, it was applied that used the mutual behavior of the ground and the structure by parameter analysis in the site of the 𐩒𐩒𐩒 tunnel located in Hwaseong-si, Gyeonggi-do, and the applicability of the site was analyzed. As a result, the error was found to be 1.0%, and it could be used as a basic material for determining the appropriate tunnel route under various conditions when evaluating the stability of the structure according to tunnel excavating at the design stage.
Purpose: Despite the proliferation of numerous morphometric and anthropometric methods for sex identification based on linear, angular, and regional measurements of various parts of the body, these methods are subject to error due to the observer's knowledge and expertise. This study aimed to explore the possibility of automated sex determination using convolutional neural networks(CNNs) based on lateral cephalometric radiographs. Materials and Methods: Lateral cephalometric radiographs of 1,476 Iranian subjects (794 women and 682 men) from 18 to 49 years of age were included. Lateral cephalometric radiographs were considered as a network input and output layer including 2 classes(male and female). Eighty percent of the data was used as a training set and the rest as a test set. Hyperparameter tuning of each network was done after preprocessing and data augmentation steps. The predictive performance of different architectures (DenseNet, ResNet, and VGG) was evaluated based on their accuracy in test sets. Results: The CNN based on the DenseNet121 architecture, with an overall accuracy of 90%, had the best predictive power in sex determination. The prediction accuracy of this model was almost equal for men and women. Furthermore, with all architectures, the use of transfer learning improved predictive performance. Conclusion: The results confirmed that a CNN could predict a person's sex with high accuracy. This prediction was independent of human bias because feature extraction was done automatically. However, for more accurate sex determination on a wider scale, further studies with larger sample sizes are desirable.
In this study, we suggest a new method to estimate the mass of a halo coronal mass ejection (CME) using synthetic CMEs. For this, we generate synthetic CMEs based on two assumptions: (1) the CME structure is a full ice-cream cone, (2) the CME electron density follows a power-law distribution (ρcme=ρ0r-n). The power-law exponent n is obtained by minimizing the root mean square error between the electron number density distributions of an observed CME and the corresponding synthetic CME at a position angle of the CME leading edge. By applying this methodology to 57 halo CMEs, we estimate two kinds of synthetic CME mass. One is a synthetic CME mass which considers only the observed CME region (Mcme1), the other is a synthetic CME mass which includes both the observed CME region and the occulted area larger than 4 solar radii (Mcme2). From these two cases, we derive conversion factors which are the ratio of a synthetic CME mass to an observed CME mass. The conversion factor for Mcme1 ranges from 1.4 to 3.0 and its average is 2.0. For Mcme2, the factor ranges from 1.8 to 5.0 with the average of 3.0. These results imply that the observed halo CME mass can be underestimated by about 2 times when we consider the observed CME region, and about 3 times when we consider the region including the occulted area. Interestingly these conversion factors have a very strong negative correlation with angular widths of halo CMEs.We also compare the results with the CME mass estimated from STEREO observations.
Hyeon-man Yun;Chan-Ho Kim;In-Soo Choi;Soung-Sub Lee
Journal of Advanced Navigation Technology
/
v.28
no.3
/
pp.262-271
/
2024
In this paper, by applying deep learning, one of the A.I. techniques, through angle information, which is optical observation data generated when observing satellites at observatories, distance information from observatories is learned to predict range data, thereby increasing the precision of satellite's orbit determination. To this end, we generated observational data from GMAT, reduced the learning data error of deep learning through preprocessing of the generated observational data, and conducted deep learning through MATLAB. Based on the predicted distance information from learning, trajectory determination was performed using an extended Kalman filter, one of the filtering techniques for trajectory determination, through GMAT. The reliability of the model was verified by comparing and analyzing the orbital determination with angular information without distance information and the orbital determination result with predicted distance information from the model.
We cooperated with four domestic educational astronomical observatories to construct a baseline and perform simultaneous observations to determine the geocentric parallax, distance, and motion of 1036 Ganymed, an Amor asteroid near the Earth. Observations were made on the day when simultaneous observations were possible from September to November 2011. Measured distances of 1036 Ganymed were 0.394 AU on Sept. 26, 0.365 AU on Oct. 11, and 0.340 AU on Oct. 25, respectively, which were within the error range as compared with the measured distances proposed by the US Jet Propulsion Laboratory. The 1036 Ganymed showed a tilting motion during the observation period, and the tangential angular velocities were measured at $0.037-0.052^{{\prime {\prime}}\;sec^{-1}$. Through this study, it was shown that the simultaneous observations among educational astronomical observations can obtain distance measurements with an error range of about 5% for asteroids near 0.4 AU. And it expected to be used as a research & education program emphasizing collaborative observation activities based on a network between observatories.
This paper aims at developing 'gyro-mouse' which provides decent and comfortable human-computer interface that supports the usage of such software as an internet-browser in PC for the people paralyzed in upper limbs. This interface operates on information collected from head movement to get the cursor control. The interface is composed of two modules. One is hardware module in which the head horizontal and vertical angular velocities are detected and transmitted into PC. The other is a PC software that translates the received data into movement and click signals of the mouse. The ANN (artificial neural network) learns the quick nodding pattern of each user as click input so that it can provide user-friendly interface. The performance of the system was evaluated by three indices that are click recognition rate. error in cursor position control. and click rate of the moving target box. The performance result of the gyro-mouse was compared with that of the optical-mouse to assess the efficiency of the gyro-mouse. The average click recognition rate was 93%, average error in cursor position control was 1.4∼5 times of optical mouse. and the click rate with 50 pixels target box was 40%(30 clicks/min) to that of optical mouse. The click rate increased monotonously with the number of trial from 35% to 44%. The suggested system is expected to provide a new possibility to communicate with the society.
본 논문에서는 한글과 영문 문서 영상들에 대한 기울어짐 추정(skew estimation) 알고리즘을 제안한다. 제안 방법은 전체 문서 영상에서 텍스트 요소들이 밀집되어 있는 영역을 선별하고, 선별된 영역에 대해 허프 변환을 적용하는 선택적 주의집중(selective attention) 방식을 채택한다. 제안 방법의 기울기 추정 과정은 2단계로 구성되는데, coarse 단계에서는 전체 영상을 몇 개의 영역으로 나누고 동일한 영역에 속하는 데이타들간의 연결 각도를 계산하여 각 영역별 accumulator에 저장한다. accumulator에 저장된 빈도치를 기준으로 $\pm$45$^{\circ}$범위 내에서 최대 $\pm$1$^{\circ}$의 오차를 가진 각 영역별 기울기를 계산한 후, 이들 중 최대 빈도값을 갖는 영역을 선정하고 그 영역의 기울기 각도를 문서 영상의 대략적인 기울기 각도로 결정한다. Refine 단계에서는 coarse 단계에서 선정된 영역에 허프 변환을 적용하여 정확한 기울기를 계산하는데, coarse 단계에서 추정한 기울기의 $\pm$1$^{\circ}$범위 내에서 0.1$^{\circ}$간격으로 측정한다. 이와 같은 선택적 주의집중 방식을 통해 기울기 추정에 소요되는 시간 비용은 최소화하고, 추정의 정확도는 최대화 할 수 있다.제안 방법의 성능 평가를 위한 실험은 다양한 형태의 영문과 한글 문서 영상 2,016개에 적용되었다. 제안 방법의 평균 수행 시간은 Pentium 200MHz PC에서 0.19초이고 평균 오차는 $\pm$0.08$^{\circ}$이다. 또한 기존의 기울기 추정 방법과 제안 방법의 성능을 비교하여 제안 방법의 우수성을 입증하였다.Abstract In this paper we propose a skew estimation algorithm for English and Korean document images. The proposed method adopts a selective attention strategy, in which we choose a region of interest which contains a cluster of text components and then apply a Hough transform to this region. The skew estimation process consists of two steps. In the coarse step, we divide the entire image into several regions, and compute the skew angle of each region by accumulating the slopes of lines connecting any two components in the region. The skew angle is estimated within the range of $\pm$45 degree with a maximum error of $\pm$1 degree. Next we select a region which has the most frequent slope in the accumulators and determine the skew angle of the image roughly as the angle corresponding to the most frequent slope. In the refine step, a Hough transform is applied for the selected region within the range of $\pm$1 degree along the angle computed from the coarse step, with an angular resolution of 0.1 degree. Based on this selective attention strategy, we can minimize the time cost and maximize the accuracy of the skew estimation.We have measured the performance of the proposed method by an experiment with 2,016 images of various English and Korean documents. The average run time is 0.19 second on a Pentium 200MHz PC, and the average error is $\pm$0.08 degree. We also have proven the superiority of our algorithm by comparing the performance with that of other well-known methods in the literature.
A practical calculation algorithm which calculates the relative output factor(ROF) for irregular shaped electron field has been developed and evaluated the accuracy of the algorithm. The algorithm adapted two-source model, which assumes that the electron dose can be express as sum of the primary source component and the scattered component from the shielding block. Original two-source model has been modified in order to make the algorithm simpler and to reduce the number of parameters needed in the calculation, while the calculation error remains within clinical tolerance range. The primary source is assumed to have Gaussian distribution, while the scattered component follows the inverse square law. Depth and angular dependency of the primary and the scattered are ignored ROF can be calculated with three parameters such as, the effective source distance, the variance of primary source, and the scattering power of the block. The coefficients are obtained from the square shaped-block measurements and the algorithm is confirmed from the rectangular or irregular shaped-fields used in the clinic. The results showed less than 1.0 % difference between the calculation and measurements for most cases. None of cases which have bigger than 2.1 % have been found. By improving the algorithm for the aperture region which shows the largest error, the algorithm could be practically used in the clinic, since one can acquire the 1011 parameter's with minimum measurements(5∼6 measurements per cones) and generates accurate results within the clinically acceptable range.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.3
/
pp.242-250
/
2019
In this paper, we propose a method to predict the failure of industrial robot using Seq2Seq (Sequence to Sequence) model, which is a model for transforming time series data among Artificial Neural Network models. The proposed method uses the data of the joint current and angular value, which can be measured by the robot itself, without additional sensor for fault diagnosis. After preprocessing the measured data for the model to learn, the Seq2Seq model was trained to convert the current to angle. Abnormal degree for fault diagnosis uses RMSE (Root Mean Squared Error) during unit time between predicted angle and actual angle. The performance evaluation of the proposed method was performed using the test data measured under different conditions of normal and defective condition of the robot. When the Abnormal degree exceed the threshold, it was classified as a fault, and the accuracy of the fault diagnosis was 96.67% from the experiment. The proposed method has the merit that it can perform fault prediction without additional sensor, and it has been confirmed from the experiment that high diagnostic performance and efficiency are available without requiring deep expert knowledge of the robot.
Purpose. The aim of this study was (1) to compare the reverse engineering technique with other existing measurement methods and (2) to analyze the effect of implant angulations and impression coping types on implant impression accuracy with reverse engineering technique. Materials and methods. Three different master models were fabricated and the distance between the two implant center points in parallel master model was measured with different three methods; digital caliper measurement (Group DC), optical measuring (Group OM), and reverse engineering technique (Group RE). The 90 experimental models were fabricated with three types of impression copings for the three different implant angulation and the angular and distance error rate were calculated. One-way ANOVA was used for comparison among the evaluation methods (P < .05). The error rates of experimental groups were analyzed by two-way ANOVA (P < .05). Results. While there was significant difference between Group DC and RE (P < .05), Group OM had no significant difference compared with other groups (P > .05). The standard deviations in reverse engineering were much lower than those of digital caliper and optical measurement. Hybrid groups had no significant difference from the pick-up groups in distance error rates (P > .05). Conclusion. The reverse engineering technique demonstrated its potential as an evaluation technique of 3D accuracy of impression techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.