• Title/Summary/Keyword: Angular displacement

Search Result 211, Processing Time 0.024 seconds

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

Development of a Measurement System for High-Speed Spindle Displacement (고속 스핀들의 변위측정 시스템 개발)

  • Kim, H.G.;Chung, W.J.;Ju, J.H.;Cho, Y.D.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.8-13
    • /
    • 2008
  • At present many research projects on high-speed spindles are being conducted. These projects require a measurement technique which includes heat expansion, vibration and displacement measurement according to angular velocity. This paper presents the development of a measurement system for high-speed spindle displacement. The measurement system is based on $LabView^{(R)}$ and features the following sensors: optical sensor which reacts to the position of a marker on the spindle and enables two Laser Displacement Sensors(LDS). These Laser Displacement Sensors send their data to a DAQ(Data Acquisition Device). It is important that the delay time caused by the response times of the sensors as well as the sampling rate of the DAQ is considered because the spindle revolves at very high speeds.

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Three dimensional Kinematic Analysis of Sweep Shot in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 3차원 운동학적 분석)

  • Choi, Ji-Young;Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.49-59
    • /
    • 2006
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. 1. In three dimensional linear velocity of blade the Y axis showed maximum linear velocity almost impact, the X axis(horizontal direction) and the Z axis(vertical direction) maximum linear velocity of blade did not show at impact but after impact this will resulted influence upon hitting puck. 2. The resultant linear velocity of each segment of right arm showed maximum resultant linear velocity at impact. It could be suggest that the right arm swing patterns is kind of push-like movement. therefore the upper arm is the most important role in the right arm swing. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed flexion all around the wrist shot. The angular displacement of trunk in internal-external rotation showed internal rotation angle at the backswing top and and increased the angle after the impact. while there is no significant adduction-abduction. 4. The three dimensional anatomical angular displacement of trunk showed most important role in wrist shot. and is follwed by shoulder joints, in addition the movement of elbow/wrist joints showed least to the shot. this study result showed upperlimb of left is more important role than upperlimb of right.

Characteristics of the Compensation for Gait of the Induced Knee Stiffness in Normal Subjects (정상인 보행에서 무릎관절의 유도된 강직에 따른 신체 보상 특성)

  • Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.357-367
    • /
    • 2013
  • The purposes of this study were investigated physical compensation for gait on induced knee stiffness in normal subjects. Ten subjects were participated in the experiment(age: $26.0{\pm}6.3$ yrs, height: $175.5{\pm}5.3$ cm, weight: $69.1{\pm}6.1$ kg). The study method adopted 3D analysis with five cameras and ground reaction force with two force-plate. Induced knee stiffness level were classified as gait pattern on ROM of knee(free level, $30^{\circ}$ restriction level, fix level). The results were as follows; In angular displacement of hip joint, left hip joint was the more extended in mid-stance on induced right knee stiffness. In angular displacement of knee joint, there was no physical compensation on induced right knee stiffness, but free knee level gait was more flexed in swing phase of right knee joint. In angular displacement of ankle joint, right ankle joint was the more dorsiflexed on induced right knee stiffness, and $30^{\circ}$ restriction level and fix level gait were less plantarflexed in TO2. In trunk tilt, free and $30^{\circ}$ restriction level gait was more backward tilt on induced right knee stiffness. In ROM of each joint, right knee joint was more larger and trunk tilt was more lower on induced right knee stiffness. In GRF, Fx was more bigger lateral force in free and $30^{\circ}$ restriction level gait, and was more bigger medial force in fix level gait. Fy was more bigger propulsion force in free level gait, and was was more bigger braking force in $30^{\circ}$ restriction level gait. Left braking force in $30^{\circ}$ restriction level gait was more bigger. Fz was no significant.

Correlation Between Joint Angular Displacement and Moment in the Human Foot (인체 족부관절의 각변위와 모멘트의 상관관계)

  • 김시열;신성휴;황지혜;최현기
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.209-215
    • /
    • 2003
  • The goal of this study was to investigate the relationship between kinematic and kinetic characteristics of foot joints resisting ground reaction force. Passive elastic joint moment and angular displacement were obtained from the experiment using 3 cameras and force plate. The relationship between joint angle and moment was mathematically modeled by using least square method. The ranges of motion of joints ranged from 5$^{\circ}$ to 7$^{\circ}$ except metatarsophalangeal joint. In the study, we presented simple mathematical models that could relate joint angle and plantar pressure. From this model, we can got the kinematic data of joints which is not available from conventional motion analysis. Furthermore, the model can be used not only for biomechanical model which simulates gait but also for clinical evaluation.

The Biomechanical Analysis of the Cuervo Salto Forward Straight Vaults with Twists (도마 몸 펴 쿠에르보 비틀기 동작 분석)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.143-151
    • /
    • 2005
  • This study was conducted to investigate the technical factors of Cuervo forward straight vaults with single twist, single and half twists, and double twists actually performed by three execellent male gymnasts participated in artistic gymnastics competition of 2003 summer Universiade in Daegu and the 85th National Sports Festival in Cheongju. To accomplish the research goals the Cuervo vaults of three gymnasts were filmed by using three digital camcorders set by 60 Hz, and data were collected through the DLT method of three dimensional cinematography. The kinematic and kinetic variables as each phasic time, CM displacement velocity, release angle inclination angle hip joint angle landing angle, average horse reaction force average moment arm average torque, whoe body's total remote local angular momentum were analyzed, so the following conclusions were reached. Generally to perform the better Cuervo vault, a gymnast should touch down on the board with the great horizontal velocity of the whole body through the fast run-up, and touch down on the horse by decreasing the horizontal displacement of the whole body during the preflight, so raise CM height gradually within a short horse contact time. He should increase the horse reaction force through checking the horizontal velocity of the whole body effectively and the inclination angular displacement of the handstand, if so he can have the large vertical velocity of the whole body. By using the acquired the velocity and the angular momentum of the whole body, he can vault himself higher and twist sufficiently, then he can get better if the body could be tilted by swinging both arms and perform the cat twist with a little flexions at hip joints. According to the above outcomes we can judge that the best athletes is LuBin, the better is YTY, and the next is JSM.

An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash (스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석)

  • Lee, Kyung-Il;Lee, Hee-Kyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

Effects of Taping the Lower Back on the Lumbopelvic Region and Hip Joint Kinematics During Sit-to-Stand

  • Kim, Si-Hyun;Park, Kyue-Nam;Kwon, Oh-Yun;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Excessive lumbar flexion during sit-to-stand (STS) is a risk factor for lower back pain. Postural taping can prevent unwanted flexion of the lumbar spine. This study aimed to demonstrate the effect of taping the lower back on the lumbopelvic region and hip joint kinematics during STS. Sixteen healthy subjects participated. All subjects performed the STS with and without taping of the lower back. A three-dimensional motion analysis system was used to measure the kinematics of the lumbar spine, pelvis, and hip joint during STS. The angle of the peak lumbar flexion, pelvic anterior tilting, and hip flexion and angular displacement of the lumbar spine between starting position and maximal lumbar flexion were collected. Paired t-tests, or Wilcoxon's rank-sum test for non-parametric distribution, were used to assess differences in the measurements with and without taping. A p-value <.05 was taken to indicate a significant difference. Significant differences were observed in the angle of the peak lumbar flexion, pelvic anterior tilting, hip flexion and angular displacement of the lumbar spine (p<.05). Taping was associated with a significant decrease in the angle of peak lumbar flexion and angular displacement of the lumbar spine between the starting position and maximal lumbar spine flexion. In addition, the peak angle of pelvic anterior tilting and hip flexion were significantly increased with taping. The findings of this study suggest that taping the lower back can decrease excessive lumbar flexion, and increase the pelvic anterior tilting and hip flexion motion during STS.

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.