• Title/Summary/Keyword: Angular displacement

Search Result 211, Processing Time 0.026 seconds

A Kinetics Analysis of Forward 11/2 Somersault on the Platform Diving (플랫폼 다이빙 앞으로 서서 앞으로 11/2회전 동작의 운동역학적 분석)

  • Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to perform the kinetic analysis of forward $1\frac{1}{2}$ somersault on the platform diving. Six men's diving players of the Korea national reserve athletes participated in this study. The variables were analyzed response time, velocity, center of mass (COM), angle, center of pressure (COP) and ground reaction force (GRF) of motion. For measure and analysis of this study, used to synchronized to 4 camcorder and 1 force plate, used to the Kwon3D XP (Ver. 4.0, Visol, Korea) and Kwon GRF (Ver. 2.0, Visol, Korea) for analyzed of variables. The results were as follows; Time factor were observed in maximum knee flexion depending on the extent of use at phase 1 of take-off to execute the somersault. This enabled the subject to secure the highest possible body position in space at the moment of jumping to execute the somersault and prepare for the entry into the water with more ease. Regarding the displacement of COM, all subjects showed rightward movement in the lateral displacement during technical execution. Changes in forward and downward movements were observed in the horizontal and vertical displacements, respectively. In terms of angular shift, the shoulder joint angle tended to decrease on average, and the elbow joints showed gradually increasing angles. This finding can be explained by the shift of the coordinate points of body segments around the rotational axis in order to execute the half-bending movement that can be implemented by pulling the lower limb segments toward the trunk using the upper limb segments. The hip joint angles gradually decreased; this accelerated the rotational movement by narrowing the distance to the trunk. Movement-specific shifts in the COP occurred in the front of and vertical directions. Regarding the changes in GRF, which is influenced by the strong compressive load exerted by the supporting feet, efficient aerial movements were executed through a vertical jump, with no energy lost to the lateral GRF.

Effects of DCM Column Properties in Softground on Stabilities of Underground Roadways (연약지반내 DCM 개량체의 특성이 지하차도의 안정성에 미치는 영향)

  • Ahn, Tae-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.77-84
    • /
    • 2010
  • In planning underground roadway foundation on soft ground, deep cement mixing method (DCM) is employed. The proper mixing ratio using batch test and replacement rates that meet strength criteria are used for deep cement mixing column. Stiffness ratio and distance between deep cement mixing columns (C.T.C) are varied to find out influences on stress, displacement, and differential settlement. The replacement ratios that meet settlement criteria are 10~35%. As stiffness varies, stress reaches at 769.kPa that exceed criteria due to stress concentration when stiffness ratio difference is over 30. Also, when C.T.C is 5 m, stress spreads to soils, so C.T.C need to be considered carefully. The vertical displacement is 0.6~1.56 cm, and angular distortion is 1/909~1/510.

The Study of Standard Deviation of Gray Scale Histogram in Digital Subtraction Radiography as a Test Parameter for SuperimpoSition Error (중첩 불일치 평가기준으로서의 계수공제영상의 계조도 표준편차 연구)

  • Cho Bong-Hae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.417-422
    • /
    • 1999
  • Purpose : The aim of this study was to assess the validity of standard deviation of gray scale histogram in digital subtraction radiography as a test parameter for superimposition error. Materials and Methods : Twenty periapical radiographs were used as baseline images and they were copied to exclude the influence of exposure geomety and contrast differences. These subsequent images were linearly displaced by 0.1-0.5 mm in the x-. y- and xy-directions, rotated by 0.5-3° and distorted by angular contraction of 1-5° in x- and y-axis before subtraction. The standard deviations of gray levels in the subtraction images were obtained and paired t-tests were performed. Pearson correlation coefficients(r) were calculated between the standard deviations and the superimposition errors. Results : Linear displacement showed high correlation coefficients of 0.997, 0.997 and 0.995 in x-. y- and xy-axis respectively. Statistically significant different standard deviation existed among all linearly displaced groups(p<0.05). Distortion showed relatively low correlation coefficients of 0.982 and 0.959 in x- and y-axis. The standard deviations between the two distortion groups were statistically significant different(p<0.05). Conclusion : Standard deviation of gray level distribution in digital subtraction images is satisfactory but not perfect similarity measure to assess the superimposition errors.

  • PDF

A Study on the Effect of the Sensor Gain Error in the Precision Measurement of Straightness Error Using Mixed Sequential Two-Probe Method (혼합축차이점법을 이용한 진직도 정밀측정에 있어서 센서 게인오차의 영향에 관한 연구)

  • Jeong, Ji Hun;Oh, Jeong Seok;Kihm, Gyungho;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • In this study, effect of the sensor gain error is theoretically analyzed and simulated when mixed sequential two-prove method(MTPM) is applied for the precision measurement of straightness error of a linear motion table. According to the theoretical analysis, difference of the gain errors between two displacement sensors increases measurement error dramatically and alignment error of the straightedge is also amplified by the sensor gain difference. On the other hand, if the gain errors of the two sensors are identical, most of error terms are cancelled out and the alignment error doesn't give any influence on the measurement error. Also the measurement error of the straightness error is minimized compared with that of the straightedge's form error owing to close relationship between straightness error and angular motion error of the table in the error terms.

A Study on Performance Improvement of Gear Type Vane Damper in Marine/Offshore FD Fan (선박/해양플랜트용 FD FAN의 기어식 베인 댐퍼 성능 개선에 관한 연구)

  • Jang, Sung-Cheol;Jung, Wan-Bo;Yi, Chung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, we developed a gear-type vane damper which replaces the link type through a proper gear design by means of a finite element analysis. We analyzed the fluid flow according to the amount of angular displacement. torque and backlash problems were addressed in conjunction with the pinion as a structural improvement of the forced draft fan (FD FAN). Through an environmental test. Also, results nearly identical to those in the test could be drawn when using a numerical method. Finally, we compared the gear driving result with simulation results. objective of the present study is to identify a nonlinear flow rate control method for a gear-type vane damper and to propose a damper shape which offers linear flow rate control. This study is related to the development of a gear-type vane damper of the change-link type in a forced draft fan.

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique (Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정)

  • Lee, Sang-Joon;Paik, Nu-Geun;Yoon, Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

A Precision Rotational Device using Piezoelectric Elements and Impact Drive Mechanism (압전소자와 충격구동 메커니즘을 이용한 초정밀 회전장치)

  • Ten, Aleksey-Deson;Ryu, Bong-Gon;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • This paper describes the design, construction, and fundamental testing of a precision rotational device that utilizes piezoelectric elements as a source of driving force and impact drive mechanism as a driving principle. A novel device structure is designed and the numerical simulations about the static displacement, stress distribution, and mode shape of the designed structure are performed. A fabricated rotational device has been rotated successfully by applying saw-shaped voltages to the piezoelectric elements. The one-step rotational angle was $0.44{\times}10^{-3}$ rad at the applied voltages of 80V. The angular velocities of the device were revealed to be increased as the driving frequency and voltage were respectively increased and the preload was decreased. The device has a feature that it can be translated as well as rotated. An experimental result shows that the device was translated by ${\pm}4.56{\mu}m$ maximum when the 120V sinusoidal voltages with a phase difference of $180^{\circ}$ were respectively supplied to two piezoelectric elements.

A Study on Performance Improvement of Gear Type Vane Damper in FD Fan - Productivity Increases & Construction Improvement - (FD FAN에서 기어식 베인 댐퍼의 성능개선에 관한 연구 - 생산 및 구조 융합형 기술 -)

  • Jang, Sung-Cheol;Han, Sang-Ho;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.134-139
    • /
    • 2010
  • In this study, we developed the gear type vane damper replacing the link type through gear design using Finite Element Analysis(FEA). FEA about the pinion and the vane shaft in the boss of gear type damper for quality improvement was accomplished. We analyzed fluid flow according to angular displacement. Catched the problem of the torque and backlash bring to the pinion as structure improvement of the forced draft fan(FD FAN). Finally, we compared the gear driving result with simulation. It is the objective of the present study to identify a nonlinear flow rate control of gear type vane damper and to suggest a damper shape with a linear flow rate control. This study is related to the development of gear type vane damper change link type in forced draft fan.

Development of Virtual Prototype for Labeling: Unit on the Automatic Battery Manufacturing Line (건전지 자동화 조립라인의 라벨링부의 Virtual Prototype 개발)

  • 정상화;차경래;김현욱;신병수;나윤철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.357-362
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. In this thesis, dynamic characteristics of the steel can labeling machine on the automatic cell assembly line are studied. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed for each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Therefore, Virtual Engineering of the steel can labeling machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF