• Title/Summary/Keyword: Angular Mode

Search Result 212, Processing Time 0.031 seconds

Gravitational Wave Emission from Pulsars with Glitches

  • Kim, Jin-Ho;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • Gravitational waves from the pulsar glitch can be detected by next generation gravitational wave observatories. We investigate characteristics of the modes that can emit the gravitational waves excited by three different types of perturbations satisfying conservation of total rest mass and angular momentum. These perturbations mimic the pulsar glitch theories i.e., change of moment of inertia due to the star quakes or angular momentum transfer by vortex unpinning at crust-core interface. We carry out numerical hydrodynamic simulations using the pseudo-Newtonian method which makes weak field approximation for the dynamics, but taking all forms of energies into account to compute the Newtonian potential. Unlike other works, we found that the first and second strongest modes that give gravitational waves are $^2p_1$ and $H_1$ rather than$^2f$. We also found that vortex unpinning model excites the inertial mode in quadrupole moment quite effectively. The inertial mode may evolve into the non-axisymmetric r-mode.

  • PDF

Veering Phenomena and Dynamic Characteristics in Lateral Micro-Gyroscope (수평형 마이크로 자이로스코프의 비어링 현상 및 동특성)

  • 정호섭;박규연
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.132-140
    • /
    • 2001
  • The vibratory gyroscope can effectively measure the angular velocity as the oscillating and position-sensing mode are exactly tuned. The veering Phenomenon impedes the exact tuning, which is caused by the mode coupling of two modes. In this paper, the gyroscope's structure with two frames is introduced to minimize the veering phenomenon that destabilizes the tuning process of oscillating and position-sensing mode. Experimental results show that the Proposed structure can achieve the mode intersection without veering phenomenon.

  • PDF

Acousto-optic generation of orbital angular momentum states of light in a tapered optical fiber

  • Song, Changkeun;Park, Hee Su;Song, Kwang Yong;Kim, Byoung Yoon
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1441-1446
    • /
    • 2018
  • We demonstrate an acousto-optic mode converter based on a tapered optical fiber to efficiently generate orbital angular momentum states of light. In our scheme an acoustic wave is deployed to the waist of tapered optical fiber where two degenerate $HE_{21}$ modes leading to +1 and -1 orbital angular momentum eigen-modes are resonantly excited. The excitation of $TM_{01}$ and $TE_{01}$ modes is suppressed by enlarging the intermodal index difference between near-degenerate spatial modes. Numerical calculation for optimization of the taper diameter is provided. The experimental characterization of generated states is performed by analyzing the output far-field pattern and the spatial interference fringes with a uniform reference beam.

Ground Reflection Effect on OAM Multi-Mode Transmission System Based on Uniform Circular Arrays (UCA 기반 OAM 다중모드 전송시스템에 대한 지면 반사의 영향)

  • Yoo, Jeong-Ung;Son, Hae-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.28-31
    • /
    • 2018
  • This paper investigates the ground reflection effect on the channel capacity of an orbital angular momentum (OAM) multi-mode transmission system that uses uniform circular array (UCA) antennas. The ground-reflected signals cause inter-mode interferences between the OAM modes, and lead to system performance degradation. The OAM multi-mode channel capacity severely degrades owing to the ground reflection as the transmission distance increases. Increasing the UCA height above the ground and using highly directive array elements can mitigate the ground reflection effect and increase the channel capacity.

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

Performance Improvement of Chroma Intra Prediction (색차채널의 화면 내 예측 성능향상 기술)

  • Park, Jeeyoon;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.353-361
    • /
    • 2020
  • VVC (Versatile Video Coding) is a new video compression technique that is being standardized, and it supports HD / UHD / 8K video, and High Dynamic Range (HDR) video with a goal of approximately 2 times higher coding efficiency than the conventional HEVC. It also aims to support a variety of functionalities such as screen content coding, adaptive resolution changes, and independent sub-pictures. In this paper, we investigate the signaling process of intra prediction mode first, and develop an effective coding method of the chroma intra prediction mode. In case of the DM mode, the proposed method simplifies the prediction mode of the chorma intra prediction mode when referring to the angular mode of the luminance block. It can improve coding efficiency of the chroma intra prediction mode, and the proposed process can also consider the size of the block in order to further improve its coding efficiency.

Design of Full-Order Observer-based Sliding Mode Controller for Power System Stabilizer : Part I (전력계통안정기를 위한 전-차수 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part I)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1156-1158
    • /
    • 1997
  • This paper presents the proposed full-order observer-based sliding mode power system stabilizer(FOOSMPSS) for finding unmeasurable state variables(torque angle, quadratic-axis transient voltage, exciter output voltage, voltage regulator output voltage and output voltage) by measuring angular velocity. The simulation results is shown by the comparison of the FOOPSS with the proposed FOOSMPSS.

  • PDF

Dynamic Modeling and Verification of Litton's Space Inertial Reference Unit(SIRU) (ICCAS 2003)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1211-1215
    • /
    • 2003
  • Accurate mathematical models of spacecraft components are an essential of spacecraft attitude control system design, analysis and simulation. Gyro is one of the most important spacecraft components used for attitude propagation and control. Gyro errors may seriously degrade the accuracy of the calculated spacecraft angular rate and of attitude estimates due to inherent drift and bias errors. In order to validate this model, nominal case simulation has been performed and compared for the low range mode and high range mode, respectively. In this paper, a mathematical model of gyro containing the relationships for predicting spacecraft angular rate and disturbances is proposed.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Bending Vibration of a Pretwisted Rotating Cantilever Beam (초기 비틀림각을 갖는 회전 외팔보의 굽힘 진동)

  • Park, Jung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2174-2181
    • /
    • 1996
  • Equations of chordwise and flapwise bending motions of pretwisted rotatin cantilever beams are derived. The two motions are coupled to each other due to the pretwist angle of the beam cross section. As the angular speed, hub radius ratio, and pretwist angle vary, the vibration characteristics of the beam change. It is found that engenvalue loci veering phenomena and associated mode shape variations occur between two vibration modes due to the pretwist angle. The effect of the pretwist angle on the critical angular speed is also investigated.