• 제목/요약/키워드: Angular Deformation

검색결과 213건 처리시간 0.034초

새로운 강소성 가공 공정으로서 Half Channel Angular Extrusion(HCAE)의 유한요소해석 (Finite Element Analysis of Half Channel Angular Extrusion (HCAE) as a New Severe Plastic Deformation Process)

  • 김경진
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.164-171
    • /
    • 2012
  • This paper focuses on the development of a new SPD (severe plastic deformation) process named HCAE (half channel angular extrusion). HCAE technology is based on principled similar to ECAE, but imposes a larger amount and more effective plastic deformation on materials. The amount of shear deformation can be altered by varying the process parameters. Finite element analyses of HCAE were conducted in order to investigate the characteristics of deformation during HCAE and the simulated results show that the predicted value of imposed plastic strain in a single pass reaches 2.5.

X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석 (Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method)

  • 양영수;배강열
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.

Solid Coupling의 설계 및 비틀림 각도 오차 특성 연구 (A Design of Solid Coupling and Study of Torsoinal Angular error Character)

  • 노창열;이응석;안동율
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.940-944
    • /
    • 2004
  • This is a thesis about the Solid Coupling Design and Torsional Angular Error Character. The solid coupling which is designed and made is a strong rigidity material. This is a experiment of Solid Coupling Torsional Error. The Angular Error, FEM and Circularity Measurement. Devices are Twist Friction Driver, Polygon, Autocollimator and Standard Encoder for Measurement. Coupling caused by elastic deformation causes angular error.

  • PDF

판구조물의 용접 변형에 미치는 잔류응력의 영향에 관한 연구 (A study on the effect of residual stress on welding deformations in thin plate structures)

  • 서승일
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.217-219
    • /
    • 2004
  • It has been known that out-of-plane deformation in thin plate structure is caused by the angular deformation of welded joint. However, experimental results show that conventional theory based on angular deformation is not appropriate for prediction of out-of-plane deformation in thin plate structure. In this study, large deformation plate theory is introduced to clarify the effect of residual stress on out-of-plane deformation. The results by the proposed method show good agreement with the experimental results.

  • PDF

연속 회전 등통로각압축 공정의 유한요소해석 (Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing)

  • 윤승채;서민홍;김형섭
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

등통로각압축 (ECAP) 공정에서 다이 마찰 효과에 대한 수치적 연구 (A Numerical Investigateion of the Effect of Die Friction in ECAP (Equal Channel Angular Pressing))

  • 서민홍;김형섭
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.219-225
    • /
    • 2000
  • Equal channel angular pressing (ECAP) is a convenient forming process to extrude material without substantial changes in the sample geometry and this deformation process gives rise to produce ultrafine grained materials. The properties of the materials are strongly dependent on the plastic deformation behaviour during ECAP. The major process variables during ECAP are 1) die geometries, such as a channel angle and coner angles, and 2) the processes variables, such as lubrication and deformation speed. In this study, the plastic deformation behaviour of materials during the ECAP has been theoretically analysed by the finite element method (FEM). The effect of the die friction on the plastic deformation behaviour during the pressing is discussed by means of FEM calculations.

  • PDF

Compensation On-line of Errors Caused by Rotor Centrifugal Deformation for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chao-Jun;Cai, Yuan-Wen;Ren, Yuan;Fan, Ya-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.1030-1041
    • /
    • 2018
  • The aim of this paper is to design a centrifugal deformation error compensation method with guaranteed performance that allows angular velocity measurement of the magnetically suspended sensitive gyroscopes (MSSGs). The angular velocity measurement principle and the structure of the MSSG are described, and the analytical model of errors caused by MSSG rotor centrifugal deformation is established. Then, an on-line rotor centrifugal deformation error compensation method based on measurement of rotor spinning speed in real-time has been designed. The common issues caused by centrifugal deformation of spinning rotors can be effectively resolved by the proposed method. Comparative experimental results before and after compensation demonstrate the validity and superiority of the error compensation method.

다단 ECAP 공정에서 pure-Zr 의 변형거동해석 (Deformation Behavior Analysis of pure-Zr during Equal Channel Multi-Angular Pressing)

  • 노일주;권기환;채수원;권숙인;김명호;황선근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.531-536
    • /
    • 2003
  • Equal channel angular pressing (ECAP) has been employed to produce materials with ultra-fine grains that have high strength and high corrosion resistance properties. In order to obtain super plastic deformation during ECAP, multipass angular pressing is frequently employed. In this paper, three-dimensional finite element analyses have been performed to investigate the deformation behavior of pure-Zr specimen and the effects of process parameters for equal channel multi-angular pressing (ECMAP) process. The results have been compared with some experimental results

  • PDF

공업용 순 알루미늄의 반통로각압출(Half Channel Angular Extrusion) 공정에서의 소성 변형 특성 (Characteristics of Plastic Deformation of Commercially Pure Aluminum in Half Channel Angular Extrusion (HCAE))

  • 김경진;조현덕
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.120-127
    • /
    • 2013
  • A novel severe plastic deformation process named half channel angular extrusion (HCAE) is proposed in order to produce bulk UFG materials. In HCAE process, equal channel angular extrusion (ECAE) and conventional forward extrusion process is integrated to increase the strain per pass and effectiveness of the SPD process. Three-dimensional finite element analysis was carried out to study the deformation behavior of the materials in the HCAE process. HCAE process was performed experimentally on commercially pure aluminum (AA1050) and micro-Vickers hardness test was used to measure the distribution of hardness on the section of normal to the extrusion direction. The results show that HCAE is able to impose more intensive strains per pass and give rise to higher micro-hardness than ECAE.