• Title/Summary/Keyword: Angle of Yaw

Search Result 325, Processing Time 0.029 seconds

A Study on Intelligent Active Roll Angle Controller Design Analysis and Modeling Algorithm

  • Park, Jung-Hyen
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.146-150
    • /
    • 2009
  • An Intelligent active roll angle controller design algorithm is discussed. The detailed mathematical formulation and analysis are discussed, and then modeling and design method for active roll angle controller are presented. This paper proposes a design method based upon intelligent robust controller design algorithm to control actively roll angle for improving cornering performance problems. The intelligent robust controller is designed for steady speed driving vehicle system model with representation of steering angle and yaw angular velocity parameters for cornering stability. And the detailed formulation and analysis for the objective vehicle system are investigated.

  • PDF

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.

Lateral Control of Autonomous Vehicle by Yaw Rate Feedback

  • Yoo, Wan-Suk;Park, Ju-Yong;Hong, Seong-Jae;Park, Kyoung-Taik;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.338-343
    • /
    • 2002
  • In the autonomous vehicle, the reference lane is continually detected by machine vision system. And then the vehicle is steered to follow the reference yaw rates which are generated by the deviations of lateral distance and the yaw angle between a vehicle and the reference lane. To cope with the steering delay and the side-slip of vehicle, PI controller is introduced by yaw rate feedback and tuned from the simulation where the vehicle is modeled as 2 DOF and 79 DOF and verified by the results of an actual vehicle test. The lateral control algorithm by yaw rate feedback has good performances of lane tracking and passenger comfort.

Analysis of 3-dimensional Wheel/Rail Contact Geometry Considering Wheelset Yaw Motion (휠 세트 Yaw 운동을 고려한 바퀴와 선로 사이의 3차원 접촉 기하 해석)

  • Kim, Do-Jung;Park, Sam-Jin
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.5-17
    • /
    • 1985
  • Dynamics of railway vehicles are strongly influenced by the wheel/rail contact forces. Wheel/rail contact geometric characteristics are important parameters to determining wheel/rail contact forces. In general, geometric relations between wheel and rail are represented by nonlinear functions of the wheelset lateral excursion and the relative yaw angle. There are some analytical and experimental studies to show the influences of the wheelset lateral displacement on wheel/rail geometric relations. Recently radial steering bogie which is designed to have flexible yaw motions of wheelsets was developed to improve curve negotiation performance. The radial steering bogie makes it important problem to study the effects of wheelset yaw motion on wheel/rail geometric relations. This paper describes the method to analyze 3-dimensional wheel/rail contact geometry considering wheelset yaw motion and describes also some computer simulation results.

  • PDF

A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind

  • Zhang, Wen-Ming;Ge, Yao-Jun;Levitan, Marc L.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.553-564
    • /
    • 2013
  • By using the nonlinear aerostatic stability theory together with the method of mean wind decomposition, a method for nonlinear aerostatic stability analysis is proposed for long-span suspension bridges under yaw wind. A corresponding program is developed considering static wind load nonlinearity and structural nonlinearity. Taking a suspension bridge with three towers and double main spans as an example, the full range aerostatic instability is analyzed under wind at different attack angles and yaw angles. The results indicate that the lowest critical wind speed of aerostatic instability is gained when the initial yaw angle is greater than $0^{\circ}$, which suggests that perhaps yaw wind poses a disadvantage to the aerostatic stability of a long span suspension bridge. The results also show that the main span in upstream goes into instability first, and the reason for this phenomenon is discussed.

Experimental Study of Error Canceling on the Piercing Depth of Concrete by Single Shot and Barrage of Small Caliber Bullets (소구경 탄자 연발사격 시 콘크리트 관입깊이 오차 상쇄 실험 연구)

  • Lim, Chaeyeon;Kim, Kuk-Joog;Park, Young-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.35-36
    • /
    • 2019
  • Major influence factors for piercing depth of concrete against small caliber bullet are target's property such as compression strength of concrete and bullet's property such as the velocity and weight of it. In particular about the bullet's property, velocity and incidence angle could be controlled by specific position or distance between targets and shooter, but the angle of yaw of bullet dose not. Because the the angle of yaw of bullet causes lower piercing force of bullet, some errors on piercing depth of concrete could be appeared by live fire test for the evaluation of protective performance. Therefore, we have checked the error canceling effect on the piercing depth of concrete by single shot and barrage of small caiber bullets. As a result, we identified that the error of piercing depth by the angle of yaw of bullet could be cancelled by barrage.

  • PDF

A study on the gain-scheduling of missile autopilot (유도탄 제어기의 이득-스케듈링에 관한 연구)

  • 송찬호;김윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.355-360
    • /
    • 1991
  • A method of autopilot gain-scheduling is presented for missiles which have heavy aerodynamic coupling between pitch and yaw channels due to high maneuverability. Pitch and yaw, autopilot are cross-coupled, and their feedback gains are scheduled by total acceleration and bank angle for given Mach number and height. Bank angle information is obtained by using a simple estimator. By computer simulation, it is shown that the proposed method is superior to other existing methods.

  • PDF

Measurement System Development for Three-Dimensional Flow Velocity Components Using Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브를 이용한 3차원 유동속도 계측시스템 개발)

  • Kim, J.K.;Jeong, K.J.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • This paper shows the development process of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. The data reduction method using a bi-cubic curve-fitting program in a new calibration map was introduced in this study. This new calibration map can be applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, for the application angle of ${\pm}45^{\circ}$, an error for yaw and pitch angles appeared from $-1.76^{\circ}\;to\;1.83^{\circ}$ and from $-1.91^{\circ}\;to\;1.75^{\circ}$, respectively. Moreover, an error for a vector magnitude and a static pressure compared with a dynamic one showed from -7.83% to 4.87% and from -0.73 to 0.77, respectively. Even though this data reduction method showed unsatisfactory errors in a vector magnitude, it resulted in an easy and simple application method. Especially, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole. However, in order to obtain a better result, it is thought that a more sophisticated interpolation method needs to be introduced.

  • PDF

Computational Study of the Vortical Flow over a Yawed LEX-Delta Wing at a High-Angle of Attack (고영각 Yawed LEX-Delta 익에서 발생하는 와유동의 수치해석)

  • Kim, Tae-Ho;Kweon, Yong-Hun;Kim, Heuy-Dong;Sohn, Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2109-2114
    • /
    • 2003
  • The vortex flow characteristics of a yawed LEX-delta wing at a high-angle of attack are studied using a computational analysis. The objective of the present study is to investigate and visualize the effects of the yaw angle, the development and interaction of vortices, the relationship between the suction pressure distributions and the vortex flow characteristics. Computations are applied to the three dimensional, compressible, Navier-Stokes Equations. In computations, the yaw angle is varied between 0 and 20 degree at a high-angle of attack. Computational predictions are compared with the previous experimental results.

  • PDF

Numerical study on aerodynamics of banked wing in ground effect

  • Jia, Qing;Yang, Wei;Yang, Zhigang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.209-217
    • /
    • 2016
  • Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.