• Title/Summary/Keyword: Angle Changes

Search Result 1,679, Processing Time 0.022 seconds

A Numerical Study of Turbulent Flow Around a Twin-Skeg Container Ship Model with Appendages

  • Kim, Hyoung-Tae;Lee, Pyung-Kuk;Kim, Hee-Taek
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.12-23
    • /
    • 2006
  • In this paper, a numerical study is carried out to investigate the turbulent flow around a twin-skeg container ship model with rudders including propeller effects. A commercial CFD code, FLUENT is used with body forces distributed on the propeller disk to simulate the ship stem and wake flows with the propeller in operation. A multi-block, matching, structured grid system has been generated for the container ship hull with twin-skegs in consideration of rudders and body-force propeller disks. The RANS equations for incompressible fluid flows are solved numerically by using a finite volume method. For the turbulence closure, a Reynolds stress model is used in conjunction with a wall function. Computations are carried out for the bare hull as well as the hull with appendages of a twin-skeg container ship model. For the bare hull, the computational results are compared with experimental data and show generally a good agreement. For the hull with appendages, the changes of the stem flow by the rudders and the propellers have been analyzed based on the computed result since there is no experimental data available for comparison. It is found the flow incoming to the rudders has an angle of attack due to the influence of the skegs and thereby the hull surface pressure and the limiting streamlines are changed slightly by the rudders. The axial velocity of the propeller disk is found to be accelerated overall by about 35% due to the propeller operation with the rudders. The area and the magnitude of low pressure on the hull surface enlarge with the flow acceleration caused by the propeller. The propellers are found to have an effect on up to the position where the skeg begins. The propeller slipstream is disturbed strongly by the rudders and the flow is accelerated further and the transverse velocity vectors are weakened due to the flow rectifying effect of the rudder.

Interfacial Evaluation of Plasma-Treated Biodegradable Poly(p-dioxanone) Fiber/Poly(L-lactide) Composites Using Micromechanical Technique and Dynamic Contact Angle Measurement (Micromechanical 시험법과 동적접촉각 측정을 이용한 플라즈마 처리된 생분해성 Poly(p-dioxanone) 섬유강화 Poly(L-lactide) 복합재료의 계면물성 평가)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • Interfacial properties and microfailure degradation mechanisms of the oxygen-plasma treated biodegradable poly(p-dioxanone) (PPDO) fiber/poly(L-lactide) (PLLA)composites were investigated for the orthopedic applications as implant materials using micromechanical technique and surface wettability measurement. PPDO fiber reinforced PLLA composite can provide good mechanical performance for long hydrolysis time. The degree of degradation for PPDO fiber and PLLA matrix was measured by thermal analysis and optical observation. IFSS and work of adhesion, $W_a$ between PPDO fiber and PLLA matrix showed the maximum at the plasma treatment time, at 60 seconds. Work of adhesion was lineally proportional to the IFSS. PPDO fiber showed ductile microfailure modes at We initial state, whereas brittle microfailure modes appeared with elapsing hydrolysis time. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composites performance because IFSS changes with hydrolytic degradation.

  • PDF

A modified shear strength reduction finite element method for soil slope under wetting-drying cycles

  • Tu, Yiliang;Zhong, Zuliang;Luo, Weikun;Liu, Xinrong;Wang, Sui
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.739-756
    • /
    • 2016
  • The shear strength reduction finite element method (SSRFEM) is a powerful tool for slope stability analysis. The factor of safety (FOS) of the slope can be easily calculated only through reducing effective cohesion (c′) and tangent of effective friction angle ($tan{\varphi}^{\prime}$) in equal proportion. However, this method may not be applicable to soil slope under wetting-drying cycles (WDCs), because the influence of WDCs on c′ and $tan{\varphi}^{\prime}$ may be different. To research the method of estimating FOS of soil slopes under WDCs, this paper presents an experimental study firstly to investigate the effects of WDCs on the parameters of shear strength and stiffness. Twelve silty clay samples were subjected to different number of WDCs and then tested with triaxial test equipment. The test results show that WDCs have a degradation effect on shear strength (${\sigma}_1-{\sigma}_3)_f$, secant modulus of elasticity ($E_s$) and c′ while little influence on ${\varphi}^{\prime}$. Hence, conventional SSRFEM which reduces c′ and $tan{\varphi}^{\prime}$ in equal proportion cannot be adopted to compute the FOS of slope under conditions of WDCs. The SSRFEM should be modified. In detail, c′ is merely reduced among shear strength parameters, and elasticity modulus is reduced correspondingly. Besides, a new approach based on sudden substantial changes in the displacement of marked nodes is proposed to identify the slope failure in SSRFEM. Finally, the modified SSRFEM is applied to compute the FOS of a slope example.

Study on the Inlet Shape of a Selective Catalyst Reduction System with an Integrated Bypass Unit for Ships (Bypass 일체형 선박용 탈질설비의 입구형태에 대한 연구)

  • Ha, Soo-Hyeon;Lee, Jae-Chul;Lee, Sang-Beom;Kang, Donghoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.666-674
    • /
    • 2021
  • A selective catalyst reduction system (SCR) with an integrated bypass unit is proposed. Through simulations of the SCR, variations in flow to the catalyst due to the particular shape of the bypass shutting device in the SCR are also studied. The commercial software Ansys Fluent is used to develop the simulations. For the simulations, the catalyst of the SCR is modeled using the porous media method to reduce the calculation time and number of meshes, which is necessary because of the detailed modeling of the catalyst. Simulations are performed based on changes to the entrance angle to the catalyst and the size of the bypass shutting device. Finally, simulation results are used to compare and analyze the average velocity and uniformity of the flow to the catalyst.

Development of Stretchable Joint Motion Sensor for Rehabilitation based on Silver Nanoparticle Direct Printing (은 나노입자 프린팅 기반의 재활치료용 신축성 관절센서 개발)

  • Chae, Woen-Sik;Jung, Jae-Hu
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.183-188
    • /
    • 2021
  • Objective: The purpose of this study was to develop a stretchable joint motion sensor that is based on silver nano-particle. Through this sensor, it can be utilized as an equipment for rehabilitation and analyze joint movement. Method: In this study, precursor solution was created, after that, nozel printer (Musashi, Image master 350PC) was used to print on a circuit board. Sourcemeter (Keithley, Keithley-2450) was used in order to evaluate changes of electric resistance as the sensor stretches. In addition, the sensor was attached on center of a knee joint to 2 male adults, and performed knee flexion-extension in order to evaluate accurate analysis; 3 infrared cameras (100 Hz, Motion Master 100, Visol Inc., Korea) were also used to analyze three dimensional movement. Descriptive statistics were suggested for comparing each accuracy of measurement variables of joint motions with the sensor and 3D motions. Results: The change of electric resistance of the sensor indicated multiple of 30 times from initial value in 50% of elongation and the value of electric resistance were distinctively classified by following 10%, 20%, 30%, 40% of elongation respectively. Through using the sensor and 3D camera to analyze movement variable, it showed a resistance of 99% in a knee joint extension, whereas, it indicated about 80% in flexion phase. Conclusion: In this research, the stretchable joint motion sensor was created based on silver nanoparticle that has high conductivity. If the sensor stretches, the distance between nanoparticles recede which lead gradual disconnection of an electric circuit and to have increment of electric resistance. Through evaluating angle of knee joints with observation of sensor's electric resistance, it showed similar a result and propensity from 3D motion analysis. However, unstable electric resistance of the stretchable sensor was observed when it stretches to maximum length, or went through numerous joint movements. Therefore, the sensor need complement that requires stability when it comes to measuring motions in any condition.

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

A Study on the Shape of KRISO Propulsion Efficiency Improvement Devices(K-duct) using CFD (CFD를 이용한 KRISO 추진효율 향상 장치(K-duct) 형상 특성에 관한 연구)

  • Kim, Jin-wook;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.474-481
    • /
    • 2018
  • This paper is to compare by numerical analysis the flow characteristics and propulsion performance of stern with the shape change of K-duct, a pre-swirl duct developed by Korea Research Institute of Ships & Ocean Engineering (KRISO). First, the characteristics of the propeller and the resistance and self-propulsion before and after the attachment of the K-duct to the ship were verified and the validity of the calculation method was confirmed by comparing this result with the model test results. After that, resistance and self-propulsion calculations were performed by the same numerical method when the K-duct was changed into five different shapes. The efficiency of the other five cases was compared using the delivery horsepower in the model scale and the flow characteristics of the stern were analyzed as the velocity and pressure distributions in the area between the duct end and the propeller plane. For the computation, STAR-CCM +, a general-purpose flow analysis program, was used and the Reynolds Averaged Navier-Stokes (RANS) equations were applied. Rigid Body Motion (RBM) method was used for the propeller rotating motion and SST $k-{\omega}$ turbulence model was applied for the turbulence model. As a result, the tangential velocity of the propeller inflow changed according to the position angle change of the stator, and the pressure of the propeller hub and the cap changes. This regulated the propeller hub vortex. It was confirmed that the vortex of the portion where the fixed blade and the duct meet was reduced by blunt change.

Characterization on the Ozone Oxidation of Raw Natural Rubber Thin Film using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, DooYoul;Sohn, Kyung-Suk;Lee, Jung-Hun;Bae, JoongWoo
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.110-117
    • /
    • 2019
  • The characterization of the ozone oxidation for raw natural rubber (NR) was investigated under controlled conditions through image and fourier transform infrared (FT-IR) analysis. The ozone oxidation was performed on a transparent thin film of raw NR coated on a KBr window in a dark chamber at $40^{\circ}C$ under low humidity conditions to completely exclude thermal, moisture, or light oxidation. The ozone concentration was set at 40 parts per hundred million (pphm). Before or after exposure to ozone, the image of the thin film for raw NR was observed at a right or tilted angle. FT-IR absorption spectra were measured in the transmission mode according to ozone exposure time. The ozone oxidation of NR was determined by the changes in the absorption peaks at 1736, 1715, 1697, and $833cm^{-1}$, which were assigned to an aldehyde group (-CHO), a ketone group (-COR), an inter-hydrogen bond between carbonyl group (-C=O) from an aldehyde or a ketone and an amide group (-CONH-) of protein, and a cis-methine group ($is-CCH_3=CH-$, respectively. During ozone exposure period, the results indicated that the formation of the carbonyl group of aldehyde or ketone was directly related to the decrement of the double bond of cis-1,4-polyisoprene. Only carbonyl compounds such as aldehydes or ketones seemed to be formed through chain scission by ozone. Long thin cracks with one orientation at regular intervals, which resulted in consecutive chain scission, were observed by image analysis. Therefore, one possible two-step mechanism for the formation of aldehyde and ketone was suggested.

Effects of Cervical Stabilization Exercise Using Pressure Biofeedback on Neck Pain, Forward Head Posture and Acoustic Characteristics of Chronic Neck Pain Patients with Forward Head Posture (앞쪽머리자세가 있는 만성 목통증 환자에게 압력 바이오피드백 장비를 이용한 목안정화운동 적용이 목통증과 앞쪽머리자세, 음향학적 특성 변화에 미치는 효과)

  • Kim, Gi-Chul;HwangBo, Pil-Neo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2019
  • PURPOSE: This study was conducted to measure the effects of cervical stabilization exercises on neck pain, forward head posture, and the acoustic characteristics frequency and amplitude modulation of patients with chronic neck pain caused by forward head posture using pressure biofeedback. METHODS: 20 patients with chronic neck pain and voice disorders presenting at the S Exercise Center in Daegu, Korea, were included in the study. A cervical stabilization exercise program of 50 minutes per session was performed three times a week for eight weeks. Pressure biofeedback was utilized to determine the impact of the exercises on neck pain, forward head posture, and the acoustic characteristics of the patients. The measurements were taken prior to and after the intervention to determine any changes. RESULTS: A significant improvement in neck pain, craniovertebral angle and the acoustic characteristics frequency and amplitude modulation of the patients was demonstrated after the intervention (p<.05). CONCLUSION: Cervical stabilization exercises were demonstrated to have a significantly positive effect on neck pain, forward head posture, and vocalization stability in patients with chronic neck pain in the current study based on measurements taken using a pressure biofeedback system. This indicates that an improvement in forward head posture positively impacts postural stability and vocalization. Future studies investigating a greater range of interventions designed to improve neck pain and acoustical effects in patients with chronic neck pain and forward head posture patients are warranted.

Assessments in biocides with omics approaches to ecosystem

  • Ma, Seohee;Yoon, Dahye;Kim, Hyunsu;Lee, Hyangjin;Kim, Seonghye;Lee, Huichan;Kim, Jieun;Lee, Soojin;Lee, Yunsuk;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.91-100
    • /
    • 2018
  • Benzisothiazolinone (BIT) is the preservative that is widely used in industrial and household products. In this study, zebrafish (Danio rerio) was exposed to BIT at different concentrations (control, 0.5 g/L, 1.0 g/L and 2.0 g/L) for 72 hours. The techniques of nuclear magnetic resonance (NMR) spectroscopy were applied to analyze the effects of BIT on zebrafish. The advantages of NMR are the minimal sample preparation and high reproducibility of experimental results. With the multivariate statistical analysis, dimethylamine, N-acetylaspartate, glycine and histidine were identified as an important metabolite in differentiating between the control and BIT-exposed group. This study will improve the understanding the metabolite changes in the zebrafish in response to BIT exposure.