Browse > Article
http://dx.doi.org/10.6564/JKMRS.2018.22.4.091

Assessments in biocides with omics approaches to ecosystem  

Ma, Seohee (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Yoon, Dahye (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Hyunsu (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Hyangjin (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Seonghye (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Huichan (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Jieun (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Soojin (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Yunsuk (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Yujin (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Suhkmann (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.22, no.4, 2018 , pp. 91-100 More about this Journal
Abstract
Benzisothiazolinone (BIT) is the preservative that is widely used in industrial and household products. In this study, zebrafish (Danio rerio) was exposed to BIT at different concentrations (control, 0.5 g/L, 1.0 g/L and 2.0 g/L) for 72 hours. The techniques of nuclear magnetic resonance (NMR) spectroscopy were applied to analyze the effects of BIT on zebrafish. The advantages of NMR are the minimal sample preparation and high reproducibility of experimental results. With the multivariate statistical analysis, dimethylamine, N-acetylaspartate, glycine and histidine were identified as an important metabolite in differentiating between the control and BIT-exposed group. This study will improve the understanding the metabolite changes in the zebrafish in response to BIT exposure.
Keywords
High resolution-magic angle spinning; nuclear magnetic resonance spectroscopy; metabolomics; Danio rerio; benzisothiazolinone;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. D. Lundov, L. Moesby, C. Zachariae, and J. D. Johansen, Contact Derm. 60, 70 (2009)   DOI
2 Danish EPA, Survey and health assessment of preservatives in toys 124, 56 (2014)
3 Danish EPA, Survey and health assessment of preservatives in toys 124, 38 (2014)
4 E. Garcia-Hidalgo, V. Sottas, N. von Goetz, U. Hauri, C. Bogdal, and K. Hungerbuhler, Contact Derm. 76, 96 (2017)   DOI
5 H. Segner, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 187 (2009)   DOI
6 A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, Toxicol. Sci. 86, 6 (2005)   DOI
7 P. McGrath and C. Q. Li, Drug Discov. Today 13, 394 (2008)   DOI
8 L. M. Samuelsson, L. Forlin, G. Karlsson, M. Adolfsson-Erici, and D. G. Larsson, Aquat. Toxicol. 78, 341 (2006)   DOI
9 D. Yoon, J. Choi, H. Choi, and S. Kim, J. Korean Magn. Reson. Soc. 20, 13 (2016)   DOI
10 D. Yoon, M. Lee, S. Kim, and S. Kim, J. Korean Magn. Reson. Soc. 17, 1 (2013)
11 O. Beckonert, H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon, and J. K. Nicholson, Nat. Protoc. 2, 2692 (2007)   DOI
12 OECD guideline for the testing of chemicals: Fish, Acute Toxicity Test, Guideline 203, Organization for Economic Co-operation and Development (2014)
13 E. G. Bligh and W. J. Dyer, Can. J. Biochem. Physiol. 37, 911 (1959)   DOI
14 A. M. Weljie, J. Newton, P. Mercier, E. Carlson, and C. M. Slupsky, Anal. Chem. 78, 4430 (2006)   DOI
15 E. Szymanska, E. Saccenti, A. K. Smilde, and J. A. Westerhuis, Metabolomics 8, 3 (2012)   DOI
16 M. Barker and W. Rayens, J. Chemom. 17, 166 (2003)   DOI
17 E. J. van Velzen, J. A. Westerhuis, J. P. van Duynhoven, F. A. van Dorsten, H. C. Hoefsloot, D. M. Jacobs, S. Smit, R. Draijer, C. I. Kroner, and A. K. Smilde, J. Proteome Res. 7, 4483 (2008)   DOI
18 D. G. Altman and J.M. Bland, Br. Med. J. 308, 1552 (1994)   DOI
19 T. Fawcett, Machine Learning, 31, 1 (2004)
20 J. Davis and M. Goadrich, Proceedings of the 23rd International Conference on Machine Learning, 233 (2006)
21 J. L. Griffin, Curr. Opin. Chem. Biol. 7, 648 (2003)   DOI
22 J. Zhou, B. Chen and Z. Cai, Environ. Sci. Pollut. Res. Int. 22, 5092 (2015)   DOI
23 J. W. Lee, J. W. Lee, K. Kim, Y. J. Shin, J. Kim, S. Kim, H. Kim, P. Kim, and K. Park, J. Hazard. Mater. 340, 231 (2017)   DOI
24 T. N. Sager, S. Topp, L. Torup, L. G. Hanson, B. Egestad, and A. Moller, Brain Res. 892, 166 (2001)   DOI
25 M. Teng, W. Zhu, D. Wang, S. Qi, Y. Wang, J. Yan, K. Dong, M. Zheng, and C. Wang, Aquat. Toxicol. 194, 112 (2018)   DOI
26 S. Y. Kim, B. Y. Choe, H. S. Lee, D. W. Lee, K. N. Ryu, J. S. Park, C. S. Yin, K. S. Hong, C. H. Lee, and C. B. Choi, Neurochem. J. 5, 270 (2011)   DOI
27 C. Demougeot, P. Garnier, C. Mossiat, N. Bertrand, M. Giroud, A. Beley, and C. Marie, J. Neurochem. 77, 408 (2001)   DOI
28 T. E. Bates, M. Strangward, J. Keelan, G. P. Davey, P. M. Munro, and J. B. Clark, Neuroreport 7, 1397 (1996)   DOI
29 G. B. Downes and M. Granato, J. Neurobiol. 66, 437 (2006)   DOI
30 A. Roberts, Brain Res. Bull. 53, 585 (2000)   DOI
31 A. Roberts, S. R. Soffe, E. S. Wolf, M. Yoshida, and F. Y. Zhao, Ann. N. Y. Acad. Sci. 860, 19 (1998)   DOI
32 S. Grillner, Nat. Rev. Neurosci. 4, 573 (2003)
33 O. Kiehn and S. J. Butt, Prog. Neurobiol. 70, 347 (2003)   DOI
34 L. P. Cofiel and R. Mattioli, Braz. J. Med. Biol. Res. 42, 128 (2009)   DOI
35 Y. Bessho, E. Iwakoshi-Ukena, T. Tachibana, S. Maejima, S. Taniuchi, K. Masuda, K. Shikano, K. Kondo, M. Furumitsu, and K. Ukena, Neurosci. Lett. 578, 106 (2014)   DOI
36 A. N. Fonteh, R. J. Harrington, A. Tsai, P. Liao, and M. G. Harrington, Amino Acids 32, 213 (2007)   DOI
37 H. Tohgi, T. Abe, K. Hashiguchi, S. Takahashi, Y. Nozaki, and T. Kikuchi, Neurosci. Lett. 126, 155 (1991)   DOI