• Title/Summary/Keyword: Angelica sinensis polysaccharide

Search Result 5, Processing Time 0.022 seconds

Macrophage Activation by an Acidic Polysaccharide Isolated from Angelica Sinensis (Oliv.) Diels

  • Yang, Xingbin;Zhao, Yan;Wang, Haifang;Mei, Qibing
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.636-643
    • /
    • 2007
  • This study was designed to identify and characterize the mechanism of macrophage activation by AAP, an acidic polysaccharide fraction isolated from the roots of Angelica sinensis (Oliv.) Diels. As a result, AAP significantly enhanced nitric oxide (NO) production and cellular lysosomal enzyme activity in murine peritoneal macrophages in vitro and in vivo. Furthermore, L-NAME, a specific inhibitor of inducible nitric oxide synthase (iNOS), effectively suppressed AAP-induced NO generation in macrophages, indicating that AAP stimulated macrophages to produce NO through the induction of iNOS gene expression and the result was further confirmed by the experiment of the increase of AAP-induced iNOS transcription in a dose-dependent manner. To further investigate, AAP was shown to strongly augment toll-like receptor 4 (TLR4) mRNA expression and the pretreatment of macrophages with anti-TLR4 antibody significantly blocked AAP-induced NO release and the increase of iNOS activity, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) secretion.

Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells

  • Wang, Lu;Jiang, Rong;Song, Shu-Dan;Hua, Zi-Sen;Wang, Jian-Wei;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3715-3721
    • /
    • 2015
  • Leukemia is a clonal disorder with blocked normal differentiation and cell death of hematopoietic progenitor cells. Traditional modalities with most used radiation and chemotherapy are nonspecific and toxic which cause adverse effects on normal cells. Differentiation inducing therapy forcing malignant cells to undergo terminal differentiation has been proven to be a promising strategy. However, there is still scarce of potent differentiation inducing agents. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), has potential differentiation inducing activity in human chronic erythro-megakaryoblastic leukemia K562 cells. MTT assays and flow cytometric analysis demonstrated that ASP inhibited K562 cell proliferation and arrested the cell cycle at the G0/G1 phase. ASP also triggered K562 cells to undergo erythroid differentiaton as revealed by morphological changes, intensive benzidine staining and hemoglobin colorimetric reaction, as well as increased expression of glycophorin A (GPA) protein. ASP induced redistribution of STAT5 protein from the cytoplasm to the nucleus. Western blotting analysis further identified that ASP markedly sensitized K562 cells to exogenous erythropoietin (EPO) by activating EPO-induced JAK2/STAT5 tyrosine phosphorylation, thus augmenting the EPO-mediated JAK2/STAT5 signaling pathway. On the basis of these findings, we propose that ASP might be developed as a potential candidate for chronic myelogenous leukemia inducing differentiation treatment.

Senescence Effects of Angelica sinensis Polysaccharides on Human Acute Myelogenous Leukemia Stem and Progenitor Cells

  • Liu, Jun;Xu, Chun-Yan;Cai, Shi-Zhong;Zhou, Yue;Li, Jing;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6549-6556
    • /
    • 2013
  • Leukemia stem cells (LSCs) play important roles in leukemia initiation, progression and relapse, and thus represent a critical target for therapeutic intervention. Hence, it is extremely urgent to explore new therapeutic strategies directly targeting LSCs for acute myelogenous leukemia (AML) therapy. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), effectively inhibited human AML $CD34^+CD38^-$ cell proliferation in vitro culture in a dose-dependent manner while sparing normal hematopoietic stem and progenitor cells at physiologically achievable concentrations. Furthermore, ASP exerted cytotoxic effects on AML K562 cells, especially LSC-enriched $CD34^+CD38^-$ cells. Colony formation assays further showed that ASP significantly suppressed the formation of colonies derived from AML $CD34^+CD38^-$ cells but not those from normal $CD34^+CD38^-$ cells. Examination of the underlying mechanisms revealed that ASP induced $CD34^+CD38^-$ cell senescence, which was strongly associated with a series of characteristic events, including up-regulation of p53, p16, p21, and Rb genes and changes of related cell cycle regulation proteins P16, P21, cyclin E and CDK4, telomere end attrition as well as repression of telomerase activity. On the basis of these findings, we propose that ASP represents a potentially important agent for leukemia stem cell-targeted therapy.

Protective Effect of Polysaccharide Fractions from Radix A. Sinensis against tert-Butylhydroperoxide Induced Oxidative Injury in Murine Peritoneal Macrophages

  • Yang, Xingbin;Zhao, Yan;Lv, You;Yang, Ying;Ruan, Yun
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.928-935
    • /
    • 2007
  • Three Angelica sinensis polysaccharide fractions (APFs), named APF1, APF2 and APF3, were isolated and purified from Radix A. sinensis and their antioxidant activities were evaluated in isolated mouse peritoneal macrophages by pretreatment with APFs before exposure to 0.2 mM tertbutylhydroperoxide (t-BHP). The results showed that pretreatment of the macrophages with APFs as low as $10{\mu}g$/ml could significantly enhance t-BHP-decreased cell survival, intracellular glutathione (GSH) content and superoxide dismutase (SOD) activity, and also inhibited t-BHP-increased lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) formation (p < 0.05), and APF3 was the most active fraction, followed by APF2 and APF1 in decreasing order. Furthermore, we found for the first time that the bound-protein in APF3 was associated closely with the protective effects and the polysaccharide inhibited the excess NO release from t-BHP-activated macrophages to protect host cells.

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.