• Title/Summary/Keyword: Angelica sinensis D.

Search Result 7, Processing Time 0.018 seconds

Study on Biophoton Emission from roots of Angelica sinensis D., Angelica acutiloba K., and Angelica pubescens M. (국내 수입되는 바디나물속 기원 한약재의 Biophoton(생체광자) 방출 특성 연구)

  • Park, Wan-Su;Lee, Chang-Hoon
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.39-45
    • /
    • 2007
  • Objectives : The purpose of this study is to investigate the delayed luminescence-biophoton emission from root of Angelica sinensis D., Angelica acutiloba K., and Angelica pubescens M. These three species of Genus Angelica are now imported from other nations into Republic of Korea. Methods : Randomly selected samples from roots of Angelica sinensis D., Angelica acutiloba K., and Angelica pubescens M. were radiated with 150 W metal halide lamp for 1 minute. After radiation. biophoton emissions of each sample were detected by electron multiplication(EM)-charge coupled device camera. The detected biophoton image was calculated with unit of counts per pixel. Results: The average biophoton emissions of delayed luminescence with EM ratio of $\times$150 and $\times$250 were distinguished significantly. The maximum biophoton emissions of delayed luminescence with EM ratio of $\times$250 were distinguished significantly. Conclusions : These results suggest that biophoton imaging of roots of Angelica sinensis D., Angelica acutiloba K., and Angelica pubescens M. could become the meaningful method for the study of differentiation for these three species of Genus Angelica.

  • PDF

Study on Biophoton Emission from roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K (한국 당귀, 중국 당귀, 일본 당귀의 생체광자(Biophoton) 방출 비교 연구)

  • Park, Wan-Su;Lee, Chang-Hoon;Soh, Kwang-Sup;Lee, Young-Jong;Lee, Choong-Yeo;Lee, Tae-Hee;Kim, Youn-Sub;Kim, Do-Hoon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.95-100
    • /
    • 2007
  • Objectives : The purpose of this study is to investigate the delayed luminescence-biophoton emission from roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K These three species of Genus Angelica are now used as 'Danggui' in Traditional Korean Medicine. Methods : Randomly selected samples from roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K were radiated with 150 W metal halide lamp for 1 minute. After radiation, biophoton emissions of each sample were detected by electron multiplication-charge coupled device camera. The detected biophoton image was calculated with unit of counts per pixel. Results : The average and maximum biophoton emissions of delayed luminescence with electron multiplication ratio of ${\times}150$ and ${\times}250$were distinguished significantly between Angelica gigas N. and the other two species. Conclusions : These results suggest that biophoton imaging of roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K. could become the meaningful method for the study of differentiation between root of Angelica gigas N. and the other two species, Angelica sinensis D. and Angelica acutiloba K.

  • PDF

Development of Multiplex Polymerase Chain Reaction Assay for Identification of Angelica Species (Multiplex Polymerase Chain Reaction을 이용한 당귀 종 판별)

  • Kim, Yong Sang;Park, Hyeok Joo;Lee, Dong Hee;Kim, Hyun Kyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Background: Angelica gigas, A. sinensis, and A. acutiloba are commercially important in the herbal medicine market, and among them, A. gigas has the highest economic value and price. However, their similar morphological traits are often used for fraud. Despite their importance in herbal medicine, recognition of the differences between Angelica species is currently inadequate. Methods and Results: A multiplex polymerase chain reaction (PCR) method was developed for direct detection and identification of A. gigas, A. sinensis, and A. acutiloba. The gene for the distinction of species was targeted at ITS in the nucleus and trnC-petN gene in chloroplasts. The optimized multiplex PCR in the present study utilized each Angelica species-specific primer pairs. Each primer pair yielded products of 229 base pairs (bp) for A. gigas, 53 bp for A. sinensis, 170 bp for A. acutiloba. Additionally non-specific PCR products were not detected in similar species by species-specific primers. Conclusions: In the present study, a multiplex-PCR assay, successfully assessed the authenticity of Angelica species (A. gigas, A. sinensis, and A. acutiloba). and whole genome amplification (WGA) was performed after DNA extraction to identify, the species in the product. The detection method of raw materials developed in the present study could be applied to herbal medicine and health functional food management.

Multi-Function of a New Bioactive Secondary Metabolite Derived from Endophytic Fungus Colletotrichum acutatum of Angelica sinensis

  • Ramy S. Yehia
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.806-822
    • /
    • 2023
  • In the current study we assessed a new crystallized compound, 5-(1-hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP), from the endophytic fungus Colletotrichum acutatum residing in the medicinal plant Angelica sinensis for its in vitro antimicrobial, antibiofilm, antioxidant, antimalarial, and anti-proliferative properties. The promising compound was identified as C-HMMP through antimicrobial-guided fraction. The structure of C-HMMP was unambiguously confirmed by 2D NMR and HIRS spectroscopic analysis. Antimicrobial property testing of C-HMMP showed it to be effective against a variety of pathogenic bacteria and fungi with MICs ranging from 3.9 to 31.25 ㎍/ml. The compound displayed excellent antibiofilm activity against C. albicans, S. aureus, and K. pneumonia. Furthermore, the antimalarial and radical scavenging activities of C-HMMP were clearly dosedependent, with IC50 values of 0.15 and 131.2 ㎍/ml. The anti-proliferative activity of C-HMMP against the HepG-2, HeLa, and MCF-7 cell lines in vitro was investigated by MTT assay, revealing notable anti-proliferative activity with IC50 values of 114.1, 90, and 133.6 ㎍/ml, respectively. Moreover, CHMMP successfully targets topoisomerase I and demonstrated beneficial anti-mutagenicity in the Ames test against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF). Finally, the compound inhibited the activity of α-glucosidase and α-amylase with IC50 values of 144.7 and 118.6 ㎍/ml, respectively. To the best of our knowledge, the identified compound C-HMMP was obtained for the first time from C. acutatum of A. sinensis, and this study demonstrated that C-HMMP has relevant biological significance and could provide better therapeutic targets against disease.

Ecological Studies on the Forest Vegetation in the Mt. Joghe (조계산(曹溪山) 삼림식생(森林植生)의 생태학적(生態學的) 연구(硏究))

  • Chang, Seok Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.54-71
    • /
    • 1991
  • To classify and analyze the forest communities and their structures, the vegetation in Mt. Joghe was investigated from July, 1980 to August, 1989. The results obtained are as follow ; 1. A total of 750 kinds of vascular plant(49 orders, 122 families, 434 genera, 627 species, 1 subspecies, 111 varieties and 11 forma)were observed in Mt. Ioghe. The newly observed plant species were Dioscorea quingueloba, Spiranthes sinensis, Cephalanthera falcata, Angelica gigas, Clematis patents, Paeonia obovata, Hibiscus mulabilis, Ainsliaea acerifolia, Dictamnus dasycarpus, Cynachum ascyrifolia, Vaccinium koreanum, Erythrortium japonicum, Indigofera kirilowii (17species), Broussonetia kazinoki var, humillis, Euonymus, fortunei var. radicans, Juniperus communis var, nippnnica, Callicarpa japonica var. radicans, Joniperus communis var. rzipponica, Callicarpa japonica var. taquetii (4 varieties) and L indera obtusiloba for. billosum (1 forma). 2. The life spectrum of flora in Mt. Joghe was classified into $CH-D_1-R_5-e$ type. Distribution area was identical to Southern type by Nakai, Lee, and Yim. A few subtropical species were also observed. 3. Simpson's species diversity index(Ds) was 0.9 and Shannon-Weiner's diversity index (H') was 1.004. These indice suggest that the vegetation in Mt. Joghe is of complicated forest communities. 4. Pte-Q was 1.81 which was higher than the nationwide mean of 1.68. Urbanization Index (UI) was 28.75 for naturalized plant species, and 17.49 for exotic woody plant species, which were similar to those of Mt. Baekun and Mt. Naejang. 5. The forest vegetation of Mt. Joghe was grouped in 3 vegetation types : 7 natural plant Communities dominated by Quercus serrat, Quercus acutissima, Quercus variabilis, Carpinus laxiflora, Pinus derasiflora and Platycarya strobilacea, 8 substitutional plant communities Styrax japonica, Stewartia koreana, Lindera erytlrrocarpa, Zelkova serrata, Rhtrs chinensis, Controversa, and Frzrxirtus manrlshurica, and 7 plantation Communities composed of Pinus koraiensis, Pinus rigida, Magnolia nbnvata, Chamecyparis obkrsa, Larie ieptolepis, Castanea crenata and Cryptomeria japonica. 6. Actual vegetation maps and profile diagrams were made by phytosocialogical classification. 7. As the important and unique species in Mt. Joghe, Lindera sericea, Penicaria tilitorme, Hex macropoda, Hex macropoda for. pseudo-macropoda, Steroartia koreana, Adenopkora palustris and Corylop.,is coreana, which were also seported by Lee(1977), Kim and Yark(1989), were identified and Vaccinium coreanum, Cremastra appendiculinium, Juniperus comminis van. nipponica, Cephalanthera falcata, Broussortetia kazinoki var. humilis, paeonia obovata, Deutzia prunifolia, Dictamnus dasyarpus, Angelica gigics and Bupleurum falcatum were odditionally observed.

  • PDF

Development of Yak-Sun for Excess Syndrome Obesity (1) Effects of Weight, Serum Glucose, Insulin and Lipid Profiles of Oriental Medicinal Herbs with Removal of Dampness through Diuresis (실증성(實證性) 비만을 위한 약선식 개발에 관한 연구 (1) 이습(利濕) 작용이 있는 한약재 혼합 추출물이 체중과 혈청 포도당, 인슐린 농도 및 지질 조성에 미치는 효과)

  • Park Sung-Hye
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.6
    • /
    • pp.700-706
    • /
    • 2005
  • We are concerned about how to apply the theories of oriental medicine appropriately, which direction should it be taken, and how it should be developed. And it is believed to be essential for the government to make efforts to set a standard and laws to validate the medicinal effects and process of the assessment so that the systematic development can be encouraged, and to prepare guidance for the food development for national health improvement Ihis study was peformed to provide basic data that predict the usefulness of oriental medicinal herbs to remove the dampness through diuresis for excess syndrome obesity with oriental diet therapy cuisine(Yak-Sun). Five oriental medicininal herbs, Coix lachryma-jobi L, Atractylodes lancea DC., Ligusticum wallichii F., Angelica sinensis D., Zingiber officinale R. were collected and made into mixing extracts(OMCE). And we examined the effects of OMCE on body weight serum glucose, insulin and lipid profile improvement in rats fed high fat diets. Sprague-Dawley rae(230-250 g) were randomly divided into five groups : basal diet(normal diet control group, NCG), only high fat diet(High fat control group, HCG), high fat diet and supplemented with 25mg/100g body weight 50mg/100g body weight 75mg/100g body weight by OMCE(HLG, HMG, HHG). These experimental diets were fed for 6 weeks. The OME fed groups decreased more significantly in weight serum glucose insulin and lipids than the high fat control group did. These results imply that the OMCE can be used as a safe and clinically applicable ingredients for diet called Yaksun of excess syndrome obesity in human.

  • PDF

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.