• Title/Summary/Keyword: Android sensor

Search Result 179, Processing Time 0.026 seconds

A Study on Gateway System based on Google Android for U-Healthcare Service (U-Healthcare 서비스를 위한 Google Android 기반의 게이트웨이 시스템 연구)

  • Lim, Jun-woo;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.267-270
    • /
    • 2009
  • Researches of U-Healthcare have been fulfilled lively with an advanced age and change of lifestyles. Especially, medical field has focused on researches of U-Healthcare due to that reasons. The U-Healthcare service requires the foundation technologies, such as sensor aggregating, data transmitting and realtime monitoring technologies, In this study, we implemented medical sensor that applied Bluetooth technology to guarantee the patient's movement. Moreover, we also implemented a gateway which based on Google Android System in ARM 11 Embedded system.

  • PDF

Implementation of Android-Based Applications that can Select Motion Gestures In Up, Down, Left, and Right Directions (안드로이드 기반 상하좌우 방향의 동작 제스처를 선택할 수 있는 응용 프로그램 구현)

  • Yeong-Nam Jeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.945-952
    • /
    • 2023
  • In this paper, GRS chip driven JNI code application SW design based on Android platform was designed and fabricated as motion gesture frame module based on Android platform. The serial data reception module design proposed by the application-based network support API technology was designed with Android-based module design, Android-based module implementation, and Android-based function module implementation design. The data information of the sensor could be checked through Android applications such as classes of serial communication drivers, libraries, and frameworks for receiving data from wireless communication devices through Android OS applications. In addition, applications in Android implement application SW that can judge motion gestures in four directions using Java.

Development of Curling Game based on Android Mobile Platform (안드로이드 기반의 컬링 게임 개발)

  • Cho, Jae Hyeon;Ko, Se Hwan;Kim, Youn Hee;Lim, Hae Chull
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.169-177
    • /
    • 2010
  • As expectations about success of smart phones that install Android, an open mobile platform which was developed by Google, are increasing, the development of applications based on the Android has attracted a lot of interest. Especially, game applications have been well received by users. In this paper, we develop an application based on the Android for curling which was adopted as a competitive sport in the Winter Olympic Games. Curling is a sport game played by two teams. The rules of the game are simple, but it is an intelligent one that requires various strategies for victory. In this paper, the curling game based on the Android provides functions, such as pitching, sweeping, collision, and foul handling, that are required in real curling game by using technologies, such as touch screen or accelerometer sensor.

Development of a Personal Riding Robot Controlled by a Smartphone Based on Android OS (안드로이드 스마트폰 제어기반의 개인용 탑승로봇 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.592-598
    • /
    • 2013
  • In this paper, a small, lightweight smartphone-controlled riding robot is developed. Also, in this study, a smartphone with a jog shuttle mode for consideration of user convenience is proposed to make a small, lightweight riding robot. As well, a compass sensor is used to compensate for the mechanical characteristics of motors mounted on the riding robot. The riding robot is controlled by the interface of a drag-based jog shuttle in the smartphone, instead of a mechanical controller. For a personal riding robot, if the smartphone is used as a controller instead of a handle or a pole, it reduces its size, weight, and cost to a great extent. Thus, the riding robot can be used in indoor spaces such as offices for moving or a train or bus station and an airport for scouting, or hospital for disabilities. Experimental results show that the riding robot is easily and conveniently controlled by the proposed smartphone interface based on Android.

Android Remote Monitoring System of Ballast Water Treatment System (선박 평형수 처리 시스템의 안드로이드 원격 모니터링 시스템)

  • Choi, Hwi-Min;Seo, Ji-No;Lee, Kwang-Seob;Kim, Seon-Jong;Kim, Joo-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.217-224
    • /
    • 2015
  • In this paper, I describe a system for remote monitoring of devices Android-based sensor data recorded during the operation of the ballast water treatment system. The proposed remote monitoring system is Designed and implemented when a problem occurs in the ballast water treatment system installed in the vessel, provide information if you are unable to determine the cause in the field or engineer dispatch request of external. System developed is composed of a server holding the sensor data information collected from the vessel and a mobile device that is not bound to time and place. The transmission of sensor data between mobile devices and server, and is implemented by TCP/IP to transmit information securely. System is composed of request to the server from the mobile device after the user inputs the input values, to transmit the sensor data. The device provides the information of the sensor with a high level of importance to the user. Through the remote monitoring sensor information of the ballast water treatment system, the system is made to predict the failure of the sensor.

Development Status of Crowdsourced Ground Vibration Data Collection System Based on Micro-Electro-Mechanical Systems (MEMS) Sensor (MEMS 센서 기반 지반진동 정보 크라우드소싱 수집시스템 개발 현황)

  • Lee, Sangho;Kwon, Jihoe;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.547-554
    • /
    • 2018
  • Using crowdsourced sensor data collection technique, it is possible to collect high-density ground vibration data which is difficult to obtain by conventional methods. In this study, we have developed a crowdsourced ground vibration data collection system using MEMS sensors mounted on small electronic devices including smartphones, and implemented client and server based on the proposed infrastructure system design. The system is designed to gather vibration data quickly through Android-based smartphones or fixed devices based on Android Things, minimizing the usage of resource like power usage and data transmission traffic of the hardware.

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

Design of Wearable IoT based Smart Mask (웨어러블 IoT기반 스마트 마스크 설계)

  • Park, Yonghyun;Jeong, SeongWoon;Jung, Kyung Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.300-302
    • /
    • 2021
  • Usage of a face mask has become mandatory in many countries after the COVID-19. This paper described to develop a IoT based smart mask system for monitoring face mask. The system developed in this paper has two main units, a sensor module, and a smartphone application. The sensor module consists of four components: temperature and humidity sensor, a heart rate sensor, and a BLE chip. This components work as a unit to collect data and stream them through an I2C port over BLE to a connected mobile device. The smartphone application is an Android application developed for smart phones. It enables the Android device to communicate with the sensor to receive sensor data, process, store and display results.

  • PDF

An Implementation of Smart Flowerpot made with 3D Printer and NodeMCU (3D 프린터와 NodeMCU를 사용한 스마트 화분의 구현)

  • Na, Chaebin;Choi, YeonWoong;Kim, SeKwang;Seo, JangGui;Hwang, Kitae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.231-237
    • /
    • 2017
  • This paper presents an implementation of a smart flowerpot which can adjust humidity and illumination automatically after monitoring the temperature, humidity, and illumination. We made a container of the flowerpot with a 3D printer and embedded a NodeMCU micro controller in it. We attached a temperature sensor, a humidity sensor, an illumination sensor, and a water pump to the NodeMCU. We developed a control program that adjusts humidity and illumination and ran it on the NodeMCU. Also we developed an Android application and set up an MQTT server. Using the MQTT server, the NodeMCU and the Android application can exchange messages which keep sensor values and commands. Using the Android application. the user can send the proper temperature, humidity, and illumination to the smart flowerpot and monitor the sensor values.

Implementation of Extended Kalman Filter for Real-Time Noncontact ECG Signal Acquisition in Android-Based Mobile Monitoring System

  • Rachim, Vega Pradana;Kang, Sung-Chul;Chung, Wan-Young;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Noncontact electrocardiogram (ECG) measurement using capacitive-coupled technique is a very reliable long-term noninvasive health-care remote monitoring system. It can be used continuously without interrupting the daily activities of the user and is one of the most promising developments in health-care technology. However, ECG signal is a very small electric signal. A robust system is needed to separate the clean ECG signal from noise in the measurement environment. Noise may come from many sources around the system, for example, bad contact between the sensor and body, common-mode electrical noise, movement artifacts, and triboelectric effect. Thus, in this paper, the extended Kalman filter (EKF) is applied to denoise a real-time ECG signal in capacitive-coupled sensors. The ECG signal becomes highly stable and noise-free by combining the common analog signal processing and the digital EKF in the processing step. Furthermore, to achieve ubiquitous monitoring, android-based application is developed to process the heart rate in a realtime ECG measurement.