• Title/Summary/Keyword: And 2,4,6-trinitrotoluene

Search Result 56, Processing Time 0.024 seconds

A Study on the Screening of 2, 4, 6-trinitntoluene Tolerant Indigenous Herbaceous Piano (2, 4, 6-trinitrotoluene에 대해 내성을 지닌 토착 식물종 선정에 대한 연구)

  • 배범한;김선영;이인숙;장윤영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To select a suitable indigenous plant for the phytoremediation of TNT contaminated soil, eight representative species of native grasses were tested to identify TNT toxicity thresholds. The threshold was determined based on various factors including cumulative seed germination, root and shoot length, fresh biomass, and the amount of water uptake under various TNT concentrations. Phytotoxic effect of TNT on plants was increased with the increase in TNT concentration but the degree was varied between grass species. Concentrations up to 60-80mgTNT/liter did not affect germination of Abutilion avicennae, Echinochioa crusgalli var. frumentacea, and Aeschynomene indica. Phytotoxicity threshold inhibition (50%) of Abutilion avicennae, schinochioa crusgalli var. frumentacea, Aeschynomene indica were 5-40mgTNT/liter for root length, 50-73mg TNT/Liter for shoot length and 68-99mgTNT/Liter for fresh biomass during 14 days of seedling exposure. Root and shoot growth as well as fresh biomass decreased as TNT concentration increased. In addition, the amount of water uptake decreased with increasing TNT concentration in Abutilion avicennae and Aeschynomene indica. Comparison of toxicity thresholds for the tested grass species showed that sensitivity of plants to TNT was in the order of root length > shoot length > fresh biomass > germination rate. From these results, we concluded that Abutilion avicennae and Aeschynomene indica had tolerance to TNT among the species tested.

  • PDF

Detection of Nitroaromatic Compounds Based on Fluorescent Silafluorene Chemosensors

  • Kim, Bumseok
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • A simple and rapid method is described for detecting nitroaromatic explosives in air or seawater with the use of photoluminescent organosilicon compounds. The synthesis, spectroscopic characterization, and fluorescence quenching efficiency of silafluorenes are reported. Silafluorenes were synthesized from the reduction of dilithiobiphenyl with dichlorosilanes. Two silafluorenes were used for the detection of nitroaromatic compounds. Detection of nitroaromatic molecules, such as 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and picric acid (PA), has been explored. A linear Stern-Volmer relationship was observed for the first three analytes. Fluorescence spectra of silafluorenes obtained in either toluene solutions or thin films displayed no shift in the maximum of the emission wavelength. The photoluminescence quenching occurs by a static mechanism.

Effect of C/N Ratio on Composting Treatment of TNT-Contaminated Soil

  • In, Byung-Hoon;Park, Joon-Seok;NamKoong, Wan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.578-584
    • /
    • 2006
  • This research was conducted to estimate the effect of C/N ratio control on composting of TNT (2,4,6 trinitrotoluene)-contaminated soil. Glucose or acetone was selected to control C/N ratio of the contaminated soil. The C/N ratios of the controlled experiment and no controlled one were 26.0 and 6.6, respectively. During 45days, the degradation efficiency (96.0 or 91.8%) of acetone or glucose C/N ratio controlled soil was higher than that (78.4%) of no C/N ratio controlled case. The first order degradation rate constant of glucose or acetone C/N ratio control was 0.0641 or 0.0820/day. This constant was over twice 0.0356/day of no C/N ratio control. The C/N ratio control with glucose or acetone also showed a rather high $CO_2$ evolution than that without C/N ratio control. It was proven that C/N ratio control for composting of TNT-contaminated soil improved the treatment efficiency.

Biological Treatment of TNT-containing Wastewater (pink water) by Stenotrophomonas maltophilia OK-5, and RT-PCR Quantification of the Nitroreductase (pnrB) Gene (Stenotrophomonas maltophilia OK-5에 의한 TNT 함유폐수 (pink water)의 생물학적 처리 와 Nitroreductase (pnrB) 유전자의 RT-PCR 정량화)

  • Cho, Su-Hee;Cho, Yun-Seok;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.556-562
    • /
    • 2009
  • The biological treatment of TNT-containing wastewater, known commonly as pink water, was investigated using a stirred tank reactor with Stenotrophomonas maltophilia OK-5 bacterial culture. S. maltophilia OK-5 exhibited effective degradation of TNT contained in pink water, completely degrading TNT (100 mg/L) within 6 days of incubation. The dark-red brown color derived from Hydride-Meisenheimer complex became more pronounced during the incubation period, which was determined quantitatively. High-pressure liquid chromatography was used to measure residual TNT, which also resolved the metabolic intermediates (i.e., 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4-dinitro-6-hydroxytoluene). Gas chromatography-mass spectrometry was used to verify these intermediates. Quantification of the nitroreductase (pnrB) gene isolated from S. maltophilia OK-5 growing in pink water was performed with real-time PCR. The amount of pnrB gene copies increased to $10^3$-fold after 5 days of incubation time.

Review on TNT Disposal (TNT 처리에 관한 연구동향)

  • Park, Jae Hyun;Shin, Won Mo;Lee, Jae W.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.127-143
    • /
    • 2016
  • Over the decades, TNT has been produced indiscriminately to be utilized in many fields owing to its ability to manipulate the explosion. Yet, the proper technique for disposal of TNT and the waste residues had not been developed so that the large amount of TNT waste was being piled up. Upon the agreement to demilitarization of old weapon, a study on the disposal methods for TNT and the waste treatment have been raised for their dangerous nature. Since then, from burying in landfill to utilizing supercritical fluid-based oxidation, a lot of research is actively ongoing, but little progress has been made in Korea compared to developed countries. This review paper covers all the technologies developed for TNT and its waste disposal including the concept, advantage, and disadvantage of those technologies. Also, suggested here are the future research directions.

망간산화물을 이용한 TNT 환원부산물의 산화-공유결합 반응

  • 강기훈;임동민;신현상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.43-46
    • /
    • 2004
  • Explosive chemicals have been major soil and groundwater contaminants especially in the nations with active military activities. Of these explosives, 2,4,6-trinitrotoluene (TNT) is the most refractory one due to its structural characteristics. Although its efficient reduction by Fe(0) is well-known, the reduction products - mainly aminotoluenes - still possess toxicities to terrestrial biota, and are resistant to biological degradation. In this study, therefore, abiotic transformation of TNT reduction products via oxidative-coupling reaction was evaluated using Mn oxide which is ubiquitous in natural soils. The transformation efficiency is increased with the number of amino groups. Considering the very efficient reduction rate of TNT by Fe(0), Mn oxide can be successfully used for the removal of TNT reduction products.

  • PDF

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$ 에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.52-55
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin B$_{12}$ , on the reduction rate of TNT by Fe$^{0}$ was Quantitatively analyzed using a batch reactor. In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator), vitamin B$_{12}$ has augmented besides Fe$^{0}$ . In the presence of 8.0 $\mu\textrm{g}$/L of vitamin B$_{12}$ , the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin B$_{12}$ can be a promising rate controlling option for the removal of organics using a Fe$^{0}$ filled permeable reactive barrier.

  • PDF

An Environmental Management Protocol for the Mitigation of Contaminants Migration from Military Operational Ranges (오염물질 확산방지를 위한 운영중 군 사격장 환경관리방안에 대한 고찰)

  • Jung, Jae-Woong;Moon, Hee Sun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.8-18
    • /
    • 2015
  • Pollutants such as heavy metals and explosives originating from the military operational ranges can be migrated to adjacent surface water body or offsite soil, and can affect to local residents and aquatic ecosystem. Therefore, Korea Ministry of the National Defense has established various guidelines for environmental management including the installation of pollutant migration prevention facilities (PMPFs) and monitoring methodologies for heavy metals in the operational range soil and effluent and sediment of PMPFs. However, current guidelines neither address the explosive compounds such as 2, 4, 6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nor suggest detailed environmental investigation protocol. This paper introduces the new “Environmental Management Manual for Military Firing Ranges”, which includes the environmental criteria for explosives as well as the detailed investigation protocol for the affected environmental media including soil, effluent and sediment of PMPFs.

Degradation of energetic compounds using an integrated zero-valent iron-Fenton process

  • Oh Seok-Young;Kim Byung J.;Chiu Pei C.;Cha Daniel K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.493-500
    • /
    • 2003
  • The effect of reductive treatment with elemental iron on the extent of mineralization by Fenton oxidation was studied for the explosive 2,4,6-trinitrotoluene (TNT) and hexahydro-l,3,5-trinitro-l,3,5-triazine (RDX) using a completely-stirred tank reactor (CSTR). The results support the hypothesis that TNT and RDX are reduced with elemental iron to products that are oxidized more rapidly and completely by Fenton's reagent. Iron pretreatment enhanced the extent of TOC removal by approximately $20\%\;and\;60\%$ for TNT and RDX, respectively. Complete TOC removal was achieved for TNT and RDX solutions with iron pretreatment under optimal conditions. On the other hand, without iron pretreatment, complete mineralization of TNT and RDX solutions were not achieved even with much higher $H_2O_2$ and $Fe^{2+}$ concentrations. The bench-scale iron treatment-Fenton oxidation integrated system showed more than $95\%$ TOC removal for TNT and RDX solutions under optimal conditions. The proposed zero-valent iron-Fenton process was evaluated with pink water from the Iowa Army ammunition plant. Results from batch and column experiments show that TNT, RDX, and octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) were completely removed from the pink water and that triaminotoluene (TAT) and ${NH_4}^+$ were recovered as products in reduction with zero-valent iron. By using an integrated system, $83.3\pm4.2\%$ of TOC was removed in a CSTR with 10 mM of $Fe^{2+}$ and 50 mM of $H_2O_2$. These results suggest that the reduction products of TNT and RDX are more rapidly and completely mineralized by Fenton oxidation and that a sequential iron treatment-Fenton oxidation process may be a viable technology for pink water treatment.

  • PDF

Effects of Fouling and Scaling on the Retention of Explosives in Surface Water by NF-the Role of Cake Enhanced Concentration Polarisation (지표수 조건의 나노여과공정에서 파울링 및 스케일링이 화약류 물질 잔류에 미치는 영향 연구 - 케익층 형성 및 농도분극 영향 분석)

  • Heo, Jiyong;Han, Jonghun;Lee, Heebum;Lee, Jongyeol;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2015
  • The combined impact of Dissolved Organic Matter (DOM) fouling and inorganic ($CaSO_4,Ca_3(PO_4)_2$) scaling on the retention of TNT (2, 4, 6-Trinitrotoluene), RDX (Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) and HMX (1, 3, 5, 7-Tetranitro-1, 3, 5, 7-tetrazocane) explosive contaminants by nano-filtration membrane were studied, since organic fouling and salt scaling are the major limitations for membrane filtration. Results reported here indicate that DOM fouling layer with a humic acid does not necessarily lead to an immediate loss of permeate flux but can result in a severe impact on the flux loss when both humic acid and inorganic scaltants were presented simultaneously. The $Ca_3(PO_4)_2$ mixed with humic acid showd most sever flux loss (42%) compared to that of only humic acid presence (8%). It could be a result that the scaling formation of the NF membrane was dominated by cake layer formation of DOM and it was along with pore blocking by the formation of crystals inside the porous active matrix of the NF membrane. In addition, these results indicated that the membrane selectivity of the explosives retention trended correlated with respect to increasing explosives size (listed by MW) based on greater steric interactions and followed the order (MW, g $mol^{-1}$; removal, %): HMX (296.15; 83%) ${\gg}$ RDX (222.12; 49%) ≋ TNT (227.13; 32%). Because the scaling and fouling layer could lead to a additional cake-enhanced concentration polarisation effect, the retention of explosives with the presence of humic acid in the feed solution and inorganic scaling formation on top of an organic fouling layer do not differ substantially retention from that of pure DI feed and NaCl solution.