• Title/Summary/Keyword: Anchoring fiber

Search Result 28, Processing Time 0.023 seconds

An Experimental Study on the Performance of Bond-Type Anchorage Systems with Various Dimensions of Steel Mold (CFRP 긴장재용 부착형 정착 장치의 강관 몰드 제원에 따른 정착 성능 실험 연구)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • This paper contains the experimental performance evaluation results of bond-type anchorage systems with the CFRP(carbon fiber reinforced polymer) tendon. The preliminary tests were performed to find the appropriate filling materials in the steel molds. A total of five materials including epoxy or cement mortar have been used as fillers in the steel molds. Results of the preliminary tests showed that specimen filled with non-shrinkage mortar showed maximum tensile strength. Based on the finding, the non-shrinkage mortar was selected as filler for anchoring CFRP tendons. Additional tests were performed as a parametric study to select proper size of steel molds such as external diameter, thickness, and length. The proper size of steel molds with non-shrinkage mortar was selected based on the test results, which gave stable tensile performance.

The Study on Flexural Behavior of Reinforced Concrete Beams Strengthened with the Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 R/C보의 휨 거동 연구)

  • 심종성;문도영;김영호;김동희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.611-616
    • /
    • 2002
  • The concrete beam is quickly required to be replaced or strengthened due to decreasing load carrying capacity. Flexural tests on 3.1m long reinforced concrete beams with carbon-fiber rod are reported. The selected experimental variable is the method of the anchoring beam. The effects of this variable in overall behavior are discussed. This paper considered relation of load-displacement and load-strain. The maximum load was increased to the static behavior of the R/C beam strengthened with CFR rod. The results indicated generally that the flexural strength of strengthening beam was increased. It was required a proper anchorage system and can be led the ductility of beams of a carbon-fiber rod.

  • PDF

Optimum Geometry Factor of Structural Synthetic Fibers (구조용 합성섬유의 최적형상함수 결정)

  • 원종필;임동휘;박찬기;한일영;김방래
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.474-482
    • /
    • 2002
  • The purpose of the study is to establish an optimum geometry and optimum geometry factor through bond test of a structural synthetic fiber, which fully utilizes matrix anchoring without fiber fracturing with the maximum pullout resistance. Seven deformed structural synthetic fibers with widely different geometries were investigated and pullout test was conducted. Included parameters are seven different types of fiber and two of mortar matrixes. The test result shows that the crimped type structural synthetic fiber is significant improvement in the interface toughness(pullout energy) and pullout load. The pullout test was performed with various size of crimped type structural synthetic fiber in order to invest optimum geometry factor, In the basis of the test results, optimum geometry factor is established such as D=b$^{{\alpha}0{\alpha}}$h$^{λ{\beta}}$.

Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials

  • Choi, Eunsoo;Mohammadzadeh, Behzad;Hwang, Jin-Ha;Lee, Jong-Han
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • This study investigated the effects of the geometric parameters of superelastic shape memory alloy (SE SMA) fibers on the pullout displacement recovering and self-healing capacity of reinforced cementitious composites. Three diameters of 0.5, 0.7 and 1.0 mm and two different crimped lengths of 5.0 and 10.0 mm were considered. To provide best anchoring action and high bond between fiber and cement mortar, the fibers were crimped at the end to create spear-head shape. The single fiber cement-based specimens were manufactured with the cement mortar of a compressive strength of 84 MPa with the square shape at the top and a dog-bone shape at the bottom. The embedded length of each fiber was 15 mm. The pullout test was performed with displacement control to obtain monotonic or hysteretic behaviors. The results showed that pullout displacements were recovered after fibers slipped and stuck in the specimen. The specimens with fiber of larger diameter showed better displacement recovering capacity. The flag-shaped behavior was observed for all specimens, and those with fiber of 1.0 mm diameter showed the clearest one. It was observed that the length of fiber anchorage did not have a significant effect on the displacement recovery, pullout resistance and self-healing capacity.

Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plate (FSP) (섬유-강판 복합플레이트로 보강된 콘크리트 압축부재의 압축성능)

  • Cho, Baik-Soon;Choi, Eunsoo;Chung, Young-Soo;Kim, Yeon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.331-340
    • /
    • 2011
  • The application of newly developed fiber-sheet and steel-plate composite plate (FSP) as a means of improving strength and ductility capacity of concrete cylinders under axial compression load through confinement is investigated experimentally in this study. An experimental investigation involves axial load tests of two types of FSP strengthening material, two anchoring methods, and three concrete strengths. The FSP-confined cylinder tests showed that FSP provided a substantial gain in compressive strength and deformability. The performance of FRP-confined cylinders was influenced by type of the FSP strengthening material, the anchoring method, and concrete compressive strength. The FSP failure strains obtained from FSP-confined cylinder tests were higher than those from FRP-confined cylinder tests. The magnitude of FSP failure strain was related to the FSP composite effectiveness. The effects of FSP confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, radial, and volumetric strains. From the observations obtained in this investigation, it is believed that FSP is one of the best solutions for the confinement of concrete compressive members.

Pullout Test of Headed Reinforcing Bar in RC or SFRC Members with Side-Face Blowout Failure

  • Lee, Chang-Yong;Kim, Seung-Hun;Lee, Yong-Taeg
    • Architectural research
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this study, side-face blowout failure strength of high strength headed reinforcing bar, which is vertically anchoring between RC or SFRC members, is evaluated throughout pullout test. The major test parameters are content ratio of high strength steel fibers, strength of rebar, length of anchorage, presence of shear reinforcement, and the side concrete cover thickness planned to be 1.3 times of the rebar. In pullout test, tensile force was applied to the headed reinforcing bar with the hinged supports positioned 1.5 and 0.7 times the anchorage length on both sides of the headed reinforcing bar. As a result, the cone-shaped crack occurred where the headed reinforcing bar embedded and finally side-face blowout failure caused by bearing pressure of the headed reinforcing bar. The tensile strength of specimens increased by 13.0 ~26.2% with shear reinforcement. The pullout strength of the specimens increased by 3.6 ~15.4% according to steel fiber reinforcement. Increasing the anchoring length and shear reinforcement were evaluated to reduce the stress bearing ration of the total stress.

Determination of Nominal Moment of Strengthening Beam with Carbon Fiber Sheets Using Strength Method (강도설계법으로 산정된 탄소섬유시트 보강 철근콘크리트 보의 공칭 휨모멘트)

  • 조백순;정진환;김성도;박대효;이우철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.593-598
    • /
    • 2002
  • Routinely, strength method for the determination of the nominal moment of reinforced concrete beam is assumed to also be suitable for strengthening beams with carbon fiber sheets since typically strengthening beams compromise 98% by volume of reinforced concrete. Flexural capacity of strengthening beam is absolutely dependent upon the type of reinforcement materials, amount of reinforcement, anchoring system, adhesion capacity between reinforcement material and concrete. Therefore, it might be incorrect to use strength method for analysis and design of strengthening beam without considering the differences in the load-deflection curves, mechanism of failure, state of stress distribution, failure strain of the reinforcement. An flexural analysis based on force equilibrium and strain comparability has been developed for strengthening beam. Systematic experimental investigations are compared with analytical results. Then, the adaptation of strength method for strengthening beam have also been discussed.

  • PDF

An Experimental Study on Flexural Strength of RC Beam Strengthened by Carbon Fiber Reinforced Plate (탄소섬유 보강판을 이용한 철근콘크리트 보의 휨성능 개선에 관한 실험적 연구)

  • Han, Sang-Hoon;Heo, Yol;Cho, Hong-Dong;Hong, Kee-Nam;Park, Myung-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.727-732
    • /
    • 2000
  • Recently, Carbon Fiber Reinforced Plats are widely used to strength the RC beams. But the behaviour of the RC beams which is strengthened with the CFRP is not clearly defined yet. So, this experimental study was carried out for reinforced concrete beams with epoxy-bonded CFP plates. This study is selected experimental variables which are strengthening plate length, pre-loading before reinforcement and the method of anchoring the plate ends. This study investigates was strengthening effect of the RC beams by adhesion of the CFRP, and CFRP as to the respective variables.

  • PDF

Behavior of RC Beams Strengthened with Carbon Fiber SheetsUnder Repeated Loading (단조 반복하중 하의 탄소섬유시트 보강 RC보의 거동에 관한 연구)

  • Park, Jeong Yong;Kim, Seong Do;Cho, Baik Soon;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 2006
  • This study deals with the response of reinforced concrete beams strengthened with carbon fiber sheets. Test beams are subjected to static loading and repeated loading. Based on the static test results of the RC beams strengthened with carbon fiber sheets, repeated loading tests are performed. The variables of repeated loading test are composed of the number of carbon fiber sheets, the existence of U-shaped band at the end for anchoring, and loading rate of repeated loading, etc. Test results show the flexural behavior, the characteristics of strength, the characteristics of ductility, the change of flexural rigidity, and the amount of energy loss of RC beams under monotonic incremental loading and repeated loading. The failure strain of carbon fiber sheets is also estimated under repeated loading. From the experimental results, this work presents a basis of the data needed to analyze and design the static and dynamic flexural response of RC beams strengthened with carbon fiber sheets.

A study on Development of Methods to Rehabilitate the Damaged Prestressed Concrete beam Using Glass Fiber (유리섬유를 이용한 손상된 프리스트레스트 콘크리트 보의 보강공법 개발연구)

  • Kang, Won-Ho;Han, Man-Yop;Lee, Taek-Sung;Rhu, Young-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.167-175
    • /
    • 1999
  • Many composite girder bridges have been constructed for about thirty five years. Nowadays they are aged or deteriorated because of the increase in traffic and vehicle loads. In this study, the effect of strengthening with glass fiber sheet is investigated to estimate the possibility for applying to damaged prestressed concrete bridges. One normal and eight cracked specimens which had been preloaded were tested. The cracked specimens were strengthened with either external prestressing or bonding glass fiber sheet, or using both methods. The results showed that the maximum loads are almost same for both methods. So it seems that the strengthening with glass fiber sheet can be used for strengthening damaged prestressed concrete girders. It is important that proper devices should be selected to prevent glass fiber sheet from premature bonding failure below its maximum load, which is similar to end anchorage problem in external prestressing method. It is proved that the devices proposed in this paper have sufficient anchoring capability to increase load carrying capacity.