• 제목/요약/키워드: Anchorage Capacity

검색결과 140건 처리시간 0.02초

유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석 (Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method)

  • 권양수;김진국;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제28권3호
    • /
    • pp.317-324
    • /
    • 2015
  • 프리스트레스 콘크리트 정착부의 설계를 위해 AASHTO 및 PTI에서 관련 설계식을 제안하고 있다. 그러나 이러한 설계식은 구조물의 긴장력이 단순 지압판을 통해 구조 전반으로 전달된다는 가정으로 유도된 것으로 실제 구조물에 적용되는 상용 정착구의 형태와는 차이가 있다. 이 논문에서는 하중전달 시험에 의한 실험적 방법과 3차원 고체요소를 사용한 비선형 유한요소해석 프로그램을 이용한 해석적 방법을 통해 정착구의 형상 변수에 따른 정착부의 거동특성 변화에 대한 연구를 수행하였다. 하중전달시험 결과에서 얻어진 하중변위 곡선 및 극한하중 값을 해석을 통해 얻은 결과와 비교하여 유한요소모델의 적합성을 확인하였다. 또한 정착구의 리브의 설치위치, 리브의 개수, 리브의 설치길이를 주요 변수로 설정하여 형상변수에 따른 매개변수 연구를 수행하였다.

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

마산항 정박지 개선방안에 관한 연구 (A Improvement Plans for Anchorage at Masan Port)

  • 박준모;김승연
    • 해양환경안전학회지
    • /
    • 제24권6호
    • /
    • pp.637-645
    • /
    • 2018
  • 본 연구는 마산항 일부 정박지의 잠정 폐쇄로 인한 정박지 부족 문제를 분석하고 이를 개선하기 위한 방안을 제시하는 것이다. 이를 위해 마산항 정박지 가동률 평가기준 수립 및 마산항 정박지 이용 부선 규모를 추정하여 최근 5년간의 정박지 가동률을 분석하였으며, 정박지 규모의 적정성 평가 후 문제점 분석 및 개선안을 제시하고 이를 최종 검증하는 절차로 연구를 수행하였다. 연구 결과, 마산항 A-2, A-4, A-6 정박지는 가동률 평가 기준인 60 %를 초과하여 정박지 확대가 필요한 것으로 분석되었다. 이에 정박지 개선을 위해 A-2, A-4, A-6 정박지를 통합하여 마산항의 정박지 이용선박 선종 및 대기시간 등을 고려하여 집단정박지 방식으로 설정하고 정박지 규모를 기존 대비 1.8배 확장하는 안을 제시하였다. 그리고 이 개선안의 검증 결과, 마산항 정박지 가동률이 기존 대비 약 1/2 감소하여 적정성 평가기준을 대부분 만족하였으며, 해상교통측면에서 문제가 없는 것으로 분석되었다.

Shear behavior of RC beams externally strengthened and anchored with CFRP composites

  • Al-Rousan, Rajai Z.
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.447-456
    • /
    • 2017
  • The primary objective of this paper is to study the effectiveness of anchorage on the performance of shear deficient beams externally strengthened with CFRP composites. The overall behavior of the tested beams loaded up to failure, the onset of the cracking, and crack development with increased load and ductility were described. The use of CFRP composites is an effective technique to enhance the shear capacity of RC beams by using CFRP strips anchored into the tension side and from the top by 15-34% based on the investigated variables. Bonded anchorage of CFRP strips with width of 0.1h-0.3h to the beam resulted in a decrease in average interface bond stress and an increase in the effective strain of the FRP sheet at failure, which resulted in a higher shear capacity as compared with that of the U-wrapped beams without anchorage as well as delay or mitigate the sheet debonding from the concrete surface.

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.

BEHAVIOR AND DUCTILITY OF STRENGTHENED WITH EXTERNAL USING LIFTING HOLE ANCHORAGE SYSTEM

  • Kyeong-Seok Baek;ChangDu Son;Kyoung-Bong Han;Jun-Myung Park;Sun-Kyu Park
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1618-1624
    • /
    • 2009
  • Since various methods for repairing and rehabilitating have been applied to damaged bridges to increase their load carrying capacity, many researches on the methods have been widely carried out. In particular, In terms of applicability, strengthening efficiency and economical efficiency, external tendons using lifting hole anchorage system is the most effective method among the aforementioned methods. In order to verify the strengthening effectiveness, flexural experiments on the beams strengthened with external tendons using lifting hole anchorage system were carried out. The experiments were conducted on two groups of systems, the existing and the proposed external tendons using lifting hole anchorage system. In addition, An evaluation on ductility of the beams were conducted in this paper.

  • PDF

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • 제5권5호
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Flexural Strength of RC Beam Strengthened by Partially De-bonded Near Surface-Mounted FRP Strip

  • Seo, Soo-yeon;Choi, Ki-bong;Kwon, Young-sun;Lee, Kang-seok
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.149-161
    • /
    • 2016
  • This paper presents an experimental work to study the flexural strength of reinforced concrete (RC) beams strengthened by partially de-bonded near surface-mounted (NSM) fiber reinforced polymer (FRP) strip with various de-bonded length. Especially, considering high anchorage capacity at end of a FRP strip, the effect of de-bonded region at a central part was investigated. In order to check the improvement of strength or deformation capacity when the bonded surface area only increased without changing the FRP area, single and triple lines of FRP were planned. In addition, the flexural strength of the RC member strengthened by a partially de-bonded NSM FRP strip was evaluated by using the existing researchers' strength equation to predict the flexural strength after retrofit. From the study, it was found that where de-bonded region exists in the central part of a flexural member, the deformation capacity of the member is expected to be improved, because FRP strain is not to be concentrated on the center but to be extended uniformly in the de-bonded region. Where NSM FRP strips are distributed in triple lines, a relatively high strength can be exerted due to the increase of bond strength in the anchorage.

The anchorage-slip effect on direct displacement-based design of R/C bridge piers for limiting material strains

  • Mergos, P.E.
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.493-513
    • /
    • 2013
  • Direct displacement-based design (DDBD) represents an innovative philosophy for seismic design of structures. When structural considerations are more critical, DDBD design should be carried on the basis of limiting material strains since structural damage is always strain related. In this case, the outcome of DDBD is strongly influenced by the displacement demand of the structural element for the target limit strains. Experimental studies have shown that anchorage slip may contribute significantly to the total displacement capacity of R/C column elements. However, in the previous studies, anchorage slip effect is either ignored or lumped into flexural deformations by applying the equivalent strain penetration length. In the light of the above, an attempt is made in this paper to include explicitly anchorage slip effect in DDBD of R/C column elements. For this purpose, a new computer program named RCCOLA-DBD is developed for the DDBD of single R/C elements for limiting material strains. By applying this program, more than 300 parametric designs are conducted to investigate the influence of anchorage slip effect as well as of numerous other parameters on the seismic design of R/C members according to this methodology.