• Title/Summary/Keyword: Anchor Bracket

Search Result 11, Processing Time 0.026 seconds

Breaking Strength Analysis for Bolt Connection of Anchor Bracket (Anchor bracket 체결 볼트에 대한 절단 강도 해석)

  • Lee, Bong-Ju;Yang, Hun-Suk;Oh, Hyeung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.55-60
    • /
    • 2011
  • For the bolster type bogie, bolster anchor body connections are proviede to transmit the longitudinal loads for traction or braking between the carbody and the truck. The bolster anchor body connection is generally composed of anchor rod bracket, anchor rod and its fastening devices. The bolster anchor body connection shall be basically capable of withstanding a longitudinal load resulting from excessive braking case or impact. Additionally the north America standard requires that the anchor rod bracket shall be frangible, I.e. the anchor rod bracket shall fail and fall away under load before the carbody structure is damaged since to protect the cabody structure in the event of unexpected accident. This paper describes the shear connection design using the optimized mechanical fasteners in the bolster anchor body connection to satisfy these Northe America requirements.

  • PDF

Structural Analysis of Arch Anchor Brackets in Ground Anchor Construction (그라운드 앵커공법용 아치형 앵커브라켓의 구조해석)

  • Kim, Jae-Yeol;Kim, Young-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • When we excavate an underground to build basement, the ground anchors are needed to prevent collapse of neighboring ground, subsidence and movement. Ground anchor construction required shore sheet piles, wales and struts as to maintain secure excavation. Existing box-type bracket using head part of ground anchor can not be possibly adjustable to the boring angle because the brackets are manufactured with unified angle in a factory. Also, box-type brackets have imperfection and instability caused by inequable force. In this study, a new bracket system is proposed. The bracket's side plate is reinforced and the angle of boring can be controlled. To investigate the structural performance of presented brackets, FEM analysis has been performed by using ANSYS commercial program. As a result, this bracket shows sufficient stability for all angle case and the strength is increased about 24% than existing bracket.

A Experimental Study on the Structural Performance of Precast Bracket under Precast Road Deck Slab of Double Deck Tunnel (복층터널에서 도로용 중간슬래브와 연결되는 조립식 브라켓의 구조성능에 관한 실험연구)

  • Kim, Bo Yeon;Lee, Doo Sung;Kim, Tae Kyun;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.647-657
    • /
    • 2017
  • The main purpose of this study is to investigate the static & dynamic behavior of a precast bracket under precast road deck slab of double deck tunnel. In order to improve the construction speed, the field prefabricated bracket to connect the intermediate slab to the precast shield tunnel lining structure has been developed in the 'SPC (Steel Precast Concrete) bracket'. The experiments were performed for the full scale model in order to evaluate the performance of the 'SPC bracket', the structural stability was verified through the FEM analysis. The result of static loading test, no deformations or cracks of the bracket undergo the ultimate load was investigated. In addition, no pulling or deformation of the chemical anchor for fixing the bracket was measured. As a result of dynamic loading test, it was investigated that there is no problem in the chemical anchor for fixing the bracket. FEM analysis showed similar behavior to static load test and it was determined that there is no problem in serviceability and structural safety.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

Development of the Bracket for External Prestressing Method for Slab Bridge (콘크리트 교량의 외부강선 보강을 위한 앵커키 정착장치의 개발 연구)

  • 한만엽;이상열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1009-1014
    • /
    • 2001
  • This study is to develop the end anchorage of external steel reinforcement of RC slab bridges. External prestress method using the existing steel is that When the anchorage is installed in slab end, a plenty of anchor bolts were required because the only tangential stress of anchor bolt received a tendon force. Then, for this reason, the wide end anchorage was required and the shape was complicate. But this reinforcement method using method that inserts anchor key at concrete surface cut a groove gets big internal force comparing to the anchorage using existing anchor bolt. Furthermore, the number of anchor bolt for installing apparently will be reduced, and the operation will be convenient because a small anchorage of a simple shape will be received a great tendon force.

  • PDF

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

The Strength Analysis of Passenger Car Seat Frame (승용차 시트프레임의 강도해석)

  • 임종명;장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.205-212
    • /
    • 2003
  • This paper may provide a basic design data for the safer car seat mechanism and the quality of the material used by finding out the passenger's dynamic behavior when protected by seat belt during collision. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the seat is constructed using CAD program. The formation of a finite element from a geometric data of the seat is carried out using Hyper-Mesh that is the commercial software for mesh generation and post processing. In addition to seat modeling, the finite element model of seat belt and dummy is formed using the same software. Rear impact analysis is accomplished using Pam-Crash with crash pulse. The part of the recliner and right frame is under big stress in rear crash analysis because the acceleration force is exerted on the back of the seat by dummy. The stress condition of the part of the bracket is checked as well because it is considered as an important variable on the seat design. Front impact model which including dummy and seal belt is analyzed. A Part of anchor buckle of seat frame has high stress distribution because of retraction force due to forward motion of dummy at the moment of collision. On the basis of the analysis result, remodeling and reanalysis works had been repeatedly done until a satisfactory result is obtained.

The Effectiveness due to fixed position change of fault protective wire on catenary system (전차선로에서 보호선 설치 위치변경에 따른 효과 검토)

  • Ryoo, Hyang-Bok;Ahn, Young-Hoon;Hyun, Chung-Il;Kang, Seung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1456-1459
    • /
    • 2007
  • Protective equipments have a very important protection role in power accident on catenary line. These equipments are installed on electrical pole. The poles have complicated with many bands(moveable bracket, branch wire anchor, shield wire, etc). So we have improved bands and installed bands on pole to test technical condition. The Result has showed effectiveness due to fixed position change of fault protective wire and to improve band shape. For example, reduction of band made cost, simplification of installing, correct position of protective wire and shield wire.

  • PDF