• Title/Summary/Keyword: Anatomical morphometrics

Search Result 2, Processing Time 0.021 seconds

Anatomic Feasibility of Posterior Cervical Pedicle Screw Placement in Children : Computerized Tomographic Analysis of Children Under 10 Years Old

  • Lee, HoJin;Hong, Jae Taek;Kim, Il Sup;Kim, Moon Suk;Sung, Jae Hoon;Lee, Sang Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.475-481
    • /
    • 2014
  • Objective : To evaluate the anatomical feasibility of 3.5 mm screw into the cervical spine in the pediatric population and to establish useful guidelines for their placement. Methods : A total of 37 cervical spine computerized tomography scans (24 boys and 13 girls) were included in this study. All patients were younger than 10 years of age at the time of evaluation for the period of 2007-2011. Results : For the C1 screw placement, entry point height (EPH) was the most restrictive factor (47.3% patients were larger than 3.5 mm). All C2 lamina had a height larger than 3.5 mm and 68.8% (51/74) of C2 lamina had a width thicker than 3.5 mm. For C2 pedicle width, 55.4% (41/74) of cases were larger than 3.5 mm, while 58.1% (43/74) of pedicle heights were larger than 3.5 mm. For pedicle width of subaxial spine, 75.7% (C3), 73% (C4), 82.4% (C5), 89.2% (C6), and 98.1% (C7, 1/54) were greater than 3.5 mm. Mean lamina width of subaxial cervical spine was 3.1 (C3), 2.7 (C4), 2.9 (C5), 3.8 (C6), and 4.0 mm (C7), respectively. Only 34.6% (127/370) of subaxial (C3-7) lamina thickness were greater than 3.5 mm. Mean length of lateral mass for the lateral mass screw placement was 9.28 (C3), 9.08 (C4), 8.81 (C5), 8.98 (C6), and 10.38 mm (C7). Conclusion : C1 lateral mass fixation could be limited by the morphometrics of lateral mass height. C2 translamina approach is preferable to C2 pedicle screw fixation. In subaxial spines, pedicle screw placement was preferable to trans-lamina screw placement, except at C7.

MORPHOMETRICS OF ALVEOLAR PROCESS AND ANATOMICAL STRUCTURES AROUND INFERIOR MAXILLARY SINUS FOR MAXILLARY IMPLANTATION (임플랜트 시술을 위한 치조돌기와 상악동 주변 구조물의 형태계측적 연구)

  • Park, Ju-Jin;Lee, Young-Soo;Paik, Doo-Jin;Park, Won-Hee;Yoo, Dong-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.228-239
    • /
    • 2007
  • Statement of problem: Following tooth loss, the edentulous alveolar process of maxilla is affected by irreversible reabsorption process, with progressive sinus pneumatization leads to leaving inadquate bone height for placement of endosseous implants. Grafting the floor of maxillary sinus by sinus lifting surgery and augmentation of autologous bone or alternative bone material is a method of attaining sufficient bone height for maxillary implants placement and has proven to be a highty successful. Purpose: This study was undertaken to clarify the morphometric characteristics of inferior maxillary sinus and alveolar process for installation of implants. Material and method: Nineteen skulls (37 sinuses, 10M / 9F) obtained from the collection of the department of anatomy and cell biology of Hanyang medical school were studied. The mean age of the deceased was 69.9 years (range 44 to 88 years). The distance between alveolar border and inferior sinus margin at each tooth, the height of alveolar process and the thickness of cortical bone of the outer and inner table of alveolar process and the inferior wall of maxillary sinus were measured. Results and Conclusion: 1. The septum of inferior maxillary sinus were observe 28 sides (76.%) and located at the third molar (52.6%) and the second molar (26.3%). The deepest points of inferior border of maxillary sinus were located the first or second molar. The distance between alveolar margin and the deepest point of inferior maxillary sinus is $9.7{\pm}4.9mm$. 2. The length of the outer table of alveolar process were $4.9\sim28.2mm$ and the shortest point was between the first and the second molors. The thickness of them were $0.9\sim3.2mm$. The length of the inner table of alveolar process were $7.4\sim25.8mm$ and the shortest point was between the first and the second molars. The thickness of the were $0.9\sim4.6mm$. The results of this study are useful anatomical data for installing of maxillary implants.