• Title/Summary/Keyword: Anatase and rutile phase

Search Result 145, Processing Time 0.02 seconds

Optimized for Low-temperature Sintering of TiO2 Paste with TTIP (TTIP를 이용한 저온소성용 TiO2 페이스트 최적화)

  • Jung, You-Ra;Jin, En Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.608-613
    • /
    • 2013
  • In this paper, the low-temperature sintering of $TiO_2$ is approached to solve the problem of high temperature sintering which decreases the interconnection between particles or between substrate and particle. $TiO_2$ paste is prepared with Titanium (IV) isopropoxide as the precursor material and calcinate at different conditions (low temperature). In the results, since the changing of temperature and time of sintering, crystalline phase do not change and the intensities of anatase, rutile phase are higher. At $110^{\circ}C$, 7 h sintering condition, crystalline size of anatase and rutile phase are the smallest which are 13.07 and 17.47 nm, respectively. In addition, the highest zeta potential is about 32.77 mV and the repulsive force increases thus leading to the best of the dispersion characteristics between $TiO_2$ particles. Futhermore, DSSCs at that condition exhibits the highest efficiency with the values of $V_{oc}$, $J_{sc}$, FF and ${\eta}$ are 0.69 V, $8.60mA\;cm^{-2}$, 67.93% and 4.06%, respectively.

De-NOx Characteristics of V2O5 SCR according to the Ratio of TiO2 Crystal Structures

  • Seo, Choong-Kil;Bae, Jaeyoung
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.26-32
    • /
    • 2015
  • The purpose of this study is to investigate the de-NOx performance characteristics according to the $TiO_2$ crystal structures ratio of $V_2O_5$ SCR catalysts. The anatase(100%) SCR catalyst showed the highest desorption peak of 80ppm at about $250^{\circ}C$, and $NH_3$ was not desorbed at $500^{\circ}C$. It can be confirmed that there was many $NH_3$ desorbed at a high temperature among other various crystal structures, which is because the catalyst was more acidized to increase the intensity of acid sites as the content of subacid sulfate ions($NH_2SO_4$) in the rutile phase increases. The anatase/rutile(7%/93%) SCR had the smallest width of de-NOx performance drop according to thermal aging, and had strong durability against thermal aging.

A Study on Formation Process of $TiO_2$ Nanopowder by Numerical Analysis in Chemical Vapor Condensation Reactor (화학기상응축 반응기 내부의 유동해석을 통한 $TiO_2$ 나노분말의 형성과정에 관한 연구)

  • Yu, Ji-Hun;Choe, Cheol-Jin;Kim, Yong-Jin;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.33
    • /
    • pp.123-135
    • /
    • 2003
  • Using the residence time calculated by computer simulation for temperature and gas velocity distribution in CVC reactor, the kinetics on the formation of $TiO_2$ nano powder was analyzed for coagulation process, After abrupt increase of particle size at initial growth stage (< 0.2 $\mus$ ), the particle grew in proportion of cubic root to time. The numerically calculated particle sizes well agreed with the experimental results. However, the coarse rutile $TiO_2$ powders having the particle size of over 40 nm were formed on the surface of quratz rod in the reactor. it is thought that the fine anatase particles condensed on quratz rod were sintered in a heated CVC reactor to grow and transform to coarse rutile phase, and the critical size for phase transformation anstase-to-rutile was around 25 nm tn this study.

  • PDF

The influence of PEO addition on the anatase phase formation and photocatalytic characteristics of hot-water treated titania (Hot-water treat된 타이태니아의 anatase상 형성과 광촉매특성에 미치는 PEO첨가의 영향)

  • 이용지;이진경;성윤모
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.32-32
    • /
    • 2003
  • 최근 환경오염에 대한 문제가 심각해지면서 인체에 유해한 유기물질의 분해에 대한 관심이 높아지고 있으며 따라서 뛰어난 광촉매 특성을 보이는 타이태니아(TiO$_2$)에 대한 많은 연구가 수행되고있다. 타이태니아가 보이는 결정상 중에는 brookite, anatse, rutile이 있는데 이 중에서 anatse 상이 가장 우수한 광촉매 특성을 나타내는 것으로 알려져 있다. 그러나 anatse 상을 얻기 위해서는 $600^{\circ}C$ 이상의 온도로 열처리를 해야 한다는 문제점이 있으며 광촉매 특성을 향상시키기 위해서는 anantase 나노결정을 제조하여 표면적을 극대화시 키는 것이 요구되고 있다. 본 연구에서는 이러 한 두 가지 문제점을 해결하기 위하여 Polyethylen oxide(PEO)-TiO$_2$ 나노하이브리드를 Sol-Gel공정을 이용하여 합성하였으며 이들에 대한 hot-water treatment를 통하여 10$0^{\circ}C$ 이하의 저온에서 anatase 나노결정상의 분말을 합성하는데 성공하였다. 이는 SiO$_2$-TiO$_2$계 하이브리드에서만 hot-water treatment를 통하여 anatase로 결정화가 가능하다는 기존의 연구결과와 상반되는 결과로서 무기질 성분으로서 TiO$_2$만 존재하는 하이브리드에 대한 hoi-water treatment를 통하여 anatase결정상이 형성될 수 있었다.

  • PDF

Photocatalytic Properties of TiO2 According to Manufacturing Method (제조방법에 따른 TiO2의 광촉매 특성 분석)

  • Lee, Hong Joo;Park, Yu Gang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.156-161
    • /
    • 2018
  • $TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

Synthesis of Hydrous $TiO_2$ Powder by Dropping Precipitant Method and Photocatalytic Properties (침전제 적하법을 이용한 $TiO_2$ 분말 제조 및 광촉매 특성)

  • 이병민;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.308-313
    • /
    • 2000
  • Hydrous titanium oxide particles with anatase phase were prepared from 0.05 mol TiCl4 solution using NH4HCO3 as precipitant by the droopping precipitant method. The sequential change of pH is completed by a sudden and steep increase in a pH value of the range of 6~7 to which the concentration of adsorbed OH- and H+ ions on TiO2 surface is equal. Rutile phase started precipitating with anatase phase as an increase of reaction temperature above 6$0^{\circ}C$ in aqueous 0.05mol TiCl4 solution and its specific surface area was found to decrease from 452 $m^2$/g($25^{\circ}C$) to 164$m^2$/g(8$0^{\circ}C$). Specific surface area decreased rapidly when anatase powders precipitated at 4$0^{\circ}C$ were heat-treated at temperature higher 40$0^{\circ}C$. FT-IR result confirmed that it was due to the decrease of OH species within hydrous titanium oxides. The loss of ethanol after illumination of the powder heated at $600^{\circ}C$ and $700^{\circ}C$ for 4 h was 66 and 68.8%, respectively.

  • PDF

Preparation of Crystalline TiO$_2$ Ultafine Powders form Aqueous TiCl$_4$ Solution by Precipitation Method (TiCl$_4$ 수용액에서 침전법에 의한 결정상 TiO$_2$ 초미분체 제조)

  • Kim, Sun-Jae;Jung, Choong-Hwan;Park, Soon-Dong;Kwon, Sang-Chul;Park, Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.325-332
    • /
    • 1998
  • Crystalline TiO2 ultrafine powders were prepared simply by heating and stirring aqueous TiOCl2 solution with {{{{ {Ti }^{4+ } }} concentration of 0.5 M from room temperature to 10$0^{\circ}C$ under 1 atmoshpere. The crystallinity and the particle shape of TiO2 ultrafine powders obtained by simple precipitation method were analyzed us-ing XRD(X-ray diffractometer). SEM(scanning electron microscopy) and TEM(transmission electron mi-croscopy) TiO2 crystalline precipitate with rutile phases is fully formed at the temperatures of up to $65^{\circ}C$ and then TiO2 crystalline precipitate with anatase phase starts to be formed above temperatures $65^{\circ}C$ showing its full formation at 10$0^{\circ}C$ These behaviors of TiO2 crystalline precipitate directly from an aqueous TiOCl2 solution would be caused due to the existence of {{{{ OMICRON ^2+ }} ions from distilled water which oxydize TiOCl2 to TiO2 not hydrolyzing it to Ti(OH)4 Here thermodynamically stable TiO2 rutile phase generally formed at higher temperature is practically precipitated at lower temperatures in this study This may be due to the precipitation by very slow reaction enough to make TiO2 particles allocated into stable rutile structure.

  • PDF

Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis

  • Kwon, Soon Jin;Song, Hoon Sub;Im, Hyo Been;Nam, Jung Eun;Kang, Jin Kyu;Hwang, Taek Sung;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • Nanoporous $TiO_2$ films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various $TiO_2$ nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile $TiO_2$ nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase $TiO_2$ film. This new method of anatase $TiO_2$ growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of $TiO_2$ electrodes. The dense anatase $TiO_2$ layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a $TiCl_4$ solution so that the nanorods were coated with the anatase $TiO_2$ film after heat treatment. Compared to the electrode consisting of only rutile $TiO_2$, the power-conversion efficiency of the rutile-anatase hybrid $TiO_2$ electrode was found to be much higher. The total thickness of the rutile-anatase hybrid $TiO_2$ structures were around $4.5-5.0{\mu}m$, and the highest power efficiency of the cell assembled with the structured $TiO_2$ electrode was around 3.94%.

Solar Detoxification of Trichloroethylene in Waste Water with Slurry Batchtype Photoreactor (Slurry batch형 광화학 반응기를 이용한 폐수 내의 Trichlroethylene의 분해)

  • Lee, Tai-K.;Kim, Dong-H.;Cho, Sug-H.;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.10-20
    • /
    • 1992
  • In this experiment, photochemical reaction has been applied to destroy TCE in water phase. The main target of this work is to investigate the technical feasibility of large scale of solar detoxification reactor for water treatment. The results have revealed that solar detoxification utilizing photon energy from the sun is the most attractive process to decompose organic toxins in water phase at room temperature. The detailed results from this work are as follows; (1) The highest conversion ratio of TCE was obtained by using $TiO_2$, annatase as a photocatalyst among $TiO_2$ anatase, $TiO_2$ rutile and $V_2O_5$ under the same experimental condition. The anatase crystal structure was confirmed with XRD analysis, and its surface area was 7.748 $m^2/g$ from the BET-$N_2$ measurement (2) 0.1 wt% of $TiO_2$ anatase has been adopted as optimal quantity for batch slurry reactor at this experimental conditions. (3) The effect of hydrogen peroxide on the conversion of TCE was investigated. Its optimal quantity was 0.06 vol. % under this experimental conditions. (4) The effect of oxygen on the conversion of TCE also was studied by controlling the head space in photoreactor. Results indicated that sufficient amount of oxygen should be supplied to accomplish the highest conversion rate of TCE in water phase.

  • PDF

Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process

  • Kim, Hyun-Ju;Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.249-252
    • /
    • 2012
  • Fe doped $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and $TiO_2$ sol. Fe doped $TiO_2$ particles were reacted in the temperature range of 170 to $200^{\circ}C$ for 6 h. The microstructure and phase of the synthesized Fe doped $TiO_2$ nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped $TiO_2$ nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped $TiO_2$ nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped $TiO_2$ nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped $TiO_2$ nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped $TiO_2$ nanoparticles was about 16% up to ${\sim}700^{\circ}C$; water of crystallization was dehydrated at $271^{\circ}C$. The transition of Fe doped $TiO_2$ nanoparticle phase from anatase to rutile occurred at almost $561^{\circ}C$. The amount of rutile phase of the synthesized Fe doped $TiO_2$ nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.