• Title/Summary/Keyword: Analytical function

Search Result 1,270, Processing Time 0.032 seconds

Approximate Wave Functions of Dynamic Infinite Elements for Multi-layered Halfspaces

  • Kim, J.M.;Yun, C.B.;Yang, S.C.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.193-198
    • /
    • 1993
  • This paper presents a systematic procedure to obtain shape functions of the infinite elements for soil-structure interaction analysis. The function spaces are derived from the analytical solutions and appropriate assumptions based on physical interpretation. The function spaces are complete for the surface wave components, but approximate for the body wave components. Three different infinite elements are developed by using the wave functions of the derived function spaces. Numerical example analysis is presented for demonstrating the effectiveness of the present infinite elements.

  • PDF

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

Seismic performance of skewed highway bridges using analytical fragility function methodology

  • Bayat, M.;Daneshjoo, F.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.723-740
    • /
    • 2015
  • In this study, the seismic performance of skewed highway bridges has been assessed by using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare complete information about the different damage states of a 30 degree skewed highway bridge. A three dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has been applied. The details of the full nonlinear procedures have also been presented. Different spectral intensity measures are studied and the effects of the period on the fragility curves are shown in different figures. The efficiency, practicality and proficiency of these different spectral intensity measures are compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis. It has been shown that, considering different intensity measures (IM) leads us to overestimate or low estimate the damage probability which has been discussed completely.

Performance Analysis of FFH/MFSK System with Clipper Receiver in the Presence of Multitone Interference (다중톤 재밍 환경에서 clipper 수신기를 사용하는 FFH/MFSK 시스템의 성능 분석)

  • 전근표;곽진삼;권오주;박재돈;이재홍
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.15-19
    • /
    • 2003
  • In this paper, the bit error rate (BER) performance of the fast frequency hopping/M-ary frequency shift keying system using the clipper receiver is analyzed by using the characteristic function (CF) technique in the presence of n=1 band multitone jamming and additive white Gaussian noise environment. The CFs of the clipper receiver outputs are derived as a infinite series representation using Gamma function and Marcum's Q -function. The analytical results are validated with various simulation results. Performance comparisons with linear combining receiver are shown that the BER performance of the clipper receiver is much better than that of the linear combining receiver In addition, as the clipping level approaches to infinity, it is shown that the clipper receiver simply performs a linear combining without clipping and there exists an optimum value of diversity level (the number of hops per symbol) that maximizes the worst case BER performance of the clipper receiver.

  • PDF

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

Real Time Eye and Gaze Tracking (트래킹 Gaze와 실시간 Eye)

  • Min Jin-Kyoung;Cho Hyeon-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.234-239
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process fur each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

A Functional Representation of the Potential Energy Surface of Non-Identical $S_N2$ Reaction: F- … $CH_3Cl \rightarrow FCH_3$ … Cl-

  • 김정섭;김영훈;노경태;이종명
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1073-1079
    • /
    • 1998
  • The potential energy surface (PES) of the non-identical SN2 reactions, F- + CH3Cl → FCH3 + Cl and (H2O)F + CH3Cl → FCH3 + Cl-(H2O), were investigated with ab initio MO calculations. The ab initio minimum energy reaction path (MERP) of the F- + CH3Cl → FCH3 + Cl- was obtained and it was expressed with an intermediate variable t. The ab initio PES was obtained near around t. Analytical potential energy function (PEF) was determined as a function of the t in order to reproduce the ab initio PES. Based on Morse-type potential energy function, a Varying Repulsive Cores Model (VRCM) was proposed for the description of the bond forming and the bond breaking which occur simultaneously during the SN2 reaction. The MERP calculated with the PEF is well agreed with the ab initio MERP and PEF could reproduce the ab initio PES well. The potential parameters for the interactions between the gas phase molecules in the reactions and water were also obtained. ST2 type model was used for the water.

Generalizations of Ramanujan's Integral Associated with Infinite Fourier Cosine Transforms in Terms of Hypergeometric Functions and its Applications

  • Qureshi, Mohammad Idris;Dar, Showkat Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.781-795
    • /
    • 2020
  • In this paper, we obtain an analytical solution for an unsolved definite integral RC (m, n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using the hypergeometric approach and an infinite series decomposition identity. Also, we give some generalizations of Ramanujan's integral RC (m, n) defined in terms of the ordinary hypergeometric function 2F3 with suitable convergence conditions. Moreover as applications of our result we obtain nine new infinite summation formulas associated with the hypergeometric functions 0F1, 1F2 and 2F3.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Analysis of Combustion Instabilities in a 2-stage Duct System using Transfer Functions (전달함수를 이용한 2단 덕트 시스템에서의 연소불안정 해석)

  • Kim, Seonyeong;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.182-188
    • /
    • 2021
  • In this paper, using a transfer function-based analytical model, major factors influencing the acoustics and combustion instability in a two-stage duct system composed of a nozzle and a combustor were derived and their quantitative effects were evaluated. From the acoustic analysis, it was confirmed that the change in reflection coefficient and mean flow could have a great influence on the instability growth rate, and the area ratio and speed of sound ratio between the nozzle and the combustor are also key parameters to determine combustion instability as well as flame transfer functions.