• 제목/요약/키워드: Analytical approximation

검색결과 212건 처리시간 0.029초

Static analysis of FGM cylinders by a mesh-free method

  • Foroutan, M.;Moradi-Dastjerdi, R.;Sotoodeh-Bahreini, R.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper static analysis of FGM cylinders subjected to internal and external pressure was carried out by a mesh-free method. In this analysis MLS shape functions are used for approximation of displacement field in the weak form of equilibrium equation and essential boundary conditions are imposed by transformation method. Mechanical properties of cylinders were assumed to be variable in the radial direction. Two types of cylinders were analyzed in this work. At first cylinders with infinite length were considered and results obtained for these cylinders were compared with analytical solutions and a very good agreement was seen between them. Then the proposed mesh-free method was used for analysis of cylinders with finite length and two different types of boundary conditions. Results obtained from these analyses were compared with results of finite element analyses and a very good agreement was seen between them.

파라미터 수정을 사용한 형상변화 및 측정오차가 있는 빔의 모델개선 (Model Updating of Beams with Shape Change and Measurement Error Using Parameter Modification)

  • 윤병옥;최유근;장인식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.335-340
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for cantilever and simply supported beams with uniform area and shape change are carried out as model updating examples. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

전산기(電算機)를 이용(利用)한 주물(鑄物)의 응고해석(凝固解析)에 관하여 (A Analysis of Solidification of Castings by Computer)

  • 윤의박;조순형
    • 한국주조공학회지
    • /
    • 제3권2호
    • /
    • pp.83-91
    • /
    • 1983
  • In this paper analytical and numerical methods fur analysis of solidification of castings are described, and the matrix method, one of numerical method, where the nodal point is designated on the element boundary was adapted. The cooling curve obtained by experimental values, when cast steel (0.29%C. 0.62%Si) was poured into $CO_2$ mold, is compared with that of computed values by exploiting computer (V77-600 Data Proceeding System, UNIVAC). The computed value is nearly approximation to the experimental. But the computed value shows a tendency that is a little higher than the experimental in solid-liquid coexisting temperature ranges and much lower than the experimental after solidification. It is considered to result from the lacks and difficulties of ultimately appropriate adaptation of various physical properties and also air cap between castings and mold.

  • PDF

A MONTE CARLO METHOD FOR SOLVING HEAT CONDUCTION PROBLEMS WITH COMPLICATED GEOMETRY

  • Shentu, Jun;Yun, Sung-Hwan;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.207-214
    • /
    • 2007
  • A new Monte Carlo method for solving heat conduction problems is developed in this study. Differing from other Monte Carlo methods, it is a transport approximation to the heat diffusion process. The method is meshless and thus can treat problems with complicated geometry easily. To minimize the boundary effect, a scaling factor is introduced and its effect is analyzed. A set of problems, particularly the heat transfer in the fuel sphere of PBMR, is calculated by this method and the solutions are compared with those of an analytical approach.

Wave Motions in Stratified Fluids by a Translating Plate

  • Joo Sang-Woo;Park Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.882-895
    • /
    • 2006
  • Surface and interfacial waves in two superposed horizontal inviscid fluids of finite depths are studied. The flow is induced by translating a vertical rigid plate with a prescribed velocity. Analytical solutions that accurately predict the motion of the free surface and the interface are obtained by using a small-Froude-number approximation. Three different velocities of the plate are considered, while flows induced by any arbitrary motion of the plate can be easily analyzed by a linear superposition of the solutions obtained. It is shown that pinching of the upper layer can occur for a sufficiently thin upper layer, which leads to its rupture into small segments. Other interesting phenomena, such as primary and secondary wiggles generated on the interface near the wavemaker, are discussed.

진동 파라미터 수정을 사용한 형상변화가 있는 판의 모델개선 (Model Updating of Plate with Shape Change Using Parameter Modification)

  • 최유근;김옥구;윤병옥;장인식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1260-1265
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structural dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling, From the dynamic test. more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for free-free-free-free(FFFF) and clamped-free-free-free(CFFF) plate with uniform area and shape change are carried out as model updating examples, Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Intelligent Decision Support Algorithm for Uncertain Inventory Management

  • Le Ngoc Bao Long;Sam-Sang You;Truong Ngoc Cuong;Hwan-Seong Kim
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.254-255
    • /
    • 2023
  • This paper discovers a robust managerial strategy for a stochastic inventory of perishable products, where the model experiences changing factors including inner parameters and an external disturbance with unknown form. An analytical solution for the optimization problem can be obtained by applying the Hamilton-Bellman-Jacobi equation, however the policy result cannot completely suppress the oscillation from the external disturbance. Therefore, an intelligent approach named Radial Basis Function Neural Networks is applied to estimate the unknown disturbance and provide a robust controller to manipulate the inventory level more effective. The final results show the outstanding performance of RBFNN controller, where both the estimation error and control error are guaranteed in the predefined limit.

  • PDF

비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석 (Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration)

  • 이상은;이태원
    • 대한기계학회논문집A
    • /
    • 제40권4호
    • /
    • pp.415-422
    • /
    • 2016
  • 충격 가속도가 기계 시스템에 가해지면 시스템의 기능 저하 및 파손이 발생할 수 있다. 이러한 문제점을 방지하기 위하여 감시 정찰 비행기에 장착되는 짐발 구조 시스템은 설계 사양으로 MIL-STD-810G 충격 규격을 반드시 만족해야 한다. 일반적으로 비행기에서 전달되는 충격을 완화하기 위하여 시스템의 기초부에 방진고무가 설치된다. 고무는 비선형 하중-변형 관계를 가지므로 정확한 시스템의 충격 응답 계산이 어렵다. 이를 해결하기 위하여 비선형 특성을 2개의 선형으로 근사화하여 기초부에 충격 가속도를 받는 시스템의 동적 해를 유한요소법으로 구하였다. 그리고 동일한 조건에서 행한 실험과 비교 결과 제안된 해석 방법이 강성과 감쇠에서 비선형성을 갖는 방진고무가 포함된 짐발 구조 시스템의 동적 해석에도 유용함을 입증하였다.