• Title/Summary/Keyword: Analytical Stiffness Analysis

Search Result 583, Processing Time 0.023 seconds

Shear buckling analysis of laminated plates on tensionless elastic foundations

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.697-709
    • /
    • 2017
  • The current study addresses the local buckling analysis of an infinite thin rectangular symmetrically laminated composite plate restrained by a tensionless Winkler foundation and subjected to uniform in-plane shear loading. An analytic method (i.e., one-dimensional mathematical method) is used to achieve the analytical solution estimate of the contact buckling coefficient. In addition, to study the effect of ply angle and foundation stiffness on the critical buckling coefficients for the laminated composite plates, the parametric studies are implemented. Moreover, the convergence for finite element (FE) mesh is analysed, and then the examples in the parametric study are validated by the FE analysis. The results show that the FE analysis has a good agreement with the analytical solutions. Finally, an example with the analytical solution and FE analysis is presented to demonstrate the availability and feasibility of the presented analytical method.

Flexural and shear behaviour of profiled double skin composite elements

  • Anwar Hossain, K.M.;Wright, H.D.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2004
  • Double skin composite element (DSCE) is a novel form of construction comprising two skins of profiled steel sheeting with an infill of concrete. DSCEs are thought to be applicable as shear or core walls in a building where they can resist in-plane loads. In this paper, the behaviour of DSCE subjected to combined bending and shear deformation is described. Small-scale model tests on DSCEs manufactured from micro-concrete and very thin sheeting were conducted to investigate the flexural and shear behaviour along with analytical analysis. The model tests provided information on the strength, stiffness, strain conditions and failure modes of DSCEs. Detailed development of analytical models for strength and stiffness and their performance validation by model tests are presented.

Dynamic analysis and model test on steel-concrete composite beams under moving loads

  • Hou, Zhongming;Xia, He;Wang, Yuanqing;Zhang, Yanling;Zhang, Tianshen
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.565-582
    • /
    • 2015
  • This paper is concerned with the dynamic analysis of simply-supported steel-concrete composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, the governing motion equations are derived from the direct balanced method. By variable separation approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, and compared with the experimental results. The analysis results show that the governing motion equations become more complicated when interface slip is taken into account, and the dynamic behaviors are significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, the global stiffness should not be reduced as the same factor to all orders, but as different ones according to the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design and experiment, or else great deviation is inevitable.

An analysis of the farm silo supported by ground (地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 -)

  • Cho, Jin-Goo;Cho, Hyun-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.

A Study on the Core Equivalent Stiffness Modeling Technique for FSI Analysis of High-Rise Buildings Under Wind Load (풍하중을 받는 초고층건물의 FSI 해석을 위한 코어 삽입 등가 강성 모델링 기법에 관한 연구)

  • Oh, Kang-Hwan;Jeon, Doo-jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2017
  • Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.

Nonlinear Hysteretic Behavior of Hybrid Steel Beams with Reinforced Concrete Ends (단부 철근콘크리트 중앙부 철골조로 이루어진 혼합구조부의 비선형 이력거동)

  • 이은진;김욱종;문정호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.379-387
    • /
    • 2002
  • This paper presents an analytical model on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. The modeling method and appropriate coefficients with IDARC2D were proposed from the comparison with previous test results. Since the polygonal model of IDARC2D nay overestimate, new analytical model with the initial stiffness reduction coefficient was proposed. The hysteretic coefficients for the analysis of the hybrid steel beam with reinforced concrete ends were also presented. The analytical results were compared with previous experiments. The initial stiffness and the strength were predicted with less than 5% error and 10% error, respectively.

Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space (비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, the dynamic stiffness of scaled boundary finite element method(SBFEM) was analytically derived to represent the non-homogeneous space. The non-homogeneous parameters were introduced as an expotential value of power function which denoted the non-homogeneous properties of analysis domain. The dynamic stiffness of analysis domain was asymptotically expanded in frequency domain, and the coefficients of polynomial series were determined to satify the radiational condition. To verify the derived dynamic stiffness of domain, the numerical analysis of the typical problems which have the analytical solution were performed as various non-homogeneous parameters. As results, the derived dynamic stiffness adequatlly represent the features of the non-homogeneous space.

Bridge widening with composite steel-concrete girders: application and analysis of live load distribution

  • Yang, Yue;Zhang, Xiaoguang;Fan, Jiansheng;Bai, Yu
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.295-316
    • /
    • 2015
  • A bridge widening technology using steel-concrete composite system was developed and is presented in this paper. The widened superstructure system consists of a newly built composite steel-concrete girder with concrete deck and steel diaphragms attached to the existing concrete girders. This method has been applied in several bridge widening projects in China, and one of those projects is presented in detail. Due to the higher stiffness-to-weight ratio and the rapid erection of composite girders, this widening method reveals benefits in both mechanical performance and construction. As only a few methods for the design of bridges with different types of girders are recommended in current design codes, a more accurate analytical method of estimating live load distribution on girder bridges was developed. In the analytical model, the effects of span length, girder pacing, diaphragms, concrete decks were considered, as well as the torsional and flexural stiffness of both composite box girders and concrete T girders. The study shows that the AASHTO LRFD specification procedures and the analytical models proposed in this paper closely approximate the live load distribution factors determined by finite element analysis. A parametric study was also conducted using the finite element method to evaluate the potential load carrying capacities of the existing concrete girders after widening.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.