• Title/Summary/Keyword: Analytic Solution Method

Search Result 340, Processing Time 0.02 seconds

Priority Evaluation of Preliminary Cases for IMO Information Management System using Fuzzy TOPSIS and AHP (퍼지 TOPSIS&AHP를 이용한 IMO 정보관리시스템 예비과제 우선순위 평가)

  • Jang, Woon-Jae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.493-498
    • /
    • 2013
  • This paper is aimed to priority evaluation of preliminary cases for IMO -IMS(International Maritime Organization- Information Management System) using fuzzy TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) and AHP(Analytic Hierarchy Process). To this solve, therefore, this paper extract 24 preliminary cases and select 4 major preliminary alternative cases after analysing the structure of its alternative cases using FSM(Fuzzy Structure Modeling). Also, the weights of evaluation factors determine using AHP which able to keep the consistency when decision-makers assess. In AHP method, but, the numbers of paired comparison incerase as much as the numbers of the comparison items increase and because this evaluation have the many of vagueness, the decision of final ranking is used to fuzzy TOPSIS method which is included TOPSIS and Fuzzy Set Theory. The result are developed as order as Management of IMO Convention Information, Delivery of IMO Convention Information, Total IMO Database, Knowledge Hub of IMO Convention Information in IMO-IMS.

Numerical Model of One-Dimensional Advection-Diffusion Equation Applying Split-Operator Method (연산자 분리기법에 의한 1차원 이송-확산방정식의 수치모형)

  • Lee, Jeong-Gyu;Gang, Chang-Gu;Lee, Jong-In
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.143-154
    • /
    • 1997
  • A numerical model for solving advection-diffusion equation is presented by splitoperator method combining the Holly-Preissmann scheme with a fifth-degree interpolating polynomial for advection operator and the explicit scheme porposed by Hobson et al. for diffusion operator. To examine the developed model, the obtained numerical solutions are compared with both the analytic solution and those from the existing models for the instantaneous source (Gaussian hill) and the continuous source (advanced front) at upstream boundary with constant velocity and diffusivity condition. For the various cases having different Courant and Peclet numbers, it is shown that the present study provides stable solutions even for Courant numbers exceeding one. The result obtained by the present study also agree well with existing analytical solutions for both cases. The proposed explicit scheme somewhat releases the conventional restriction of explicit schemes for determining the time step size and provides satisfactory results for relatively large time step size.

  • PDF

Scalar Perturbation and Stability of a New Wormhole in Einstein-Born-Infeld Gravity (아인슈타인-본-인펠트 중력 이론에서 새로운 웜홀의 스칼라장 섭동과 안정성)

  • Kim, Jin Young
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1262-1267
    • /
    • 2018
  • We introduce a new method to construct wormholes without adopting exotic matters in Einstein-Born-Infeld gravity with a negative cosmological constant. Contrary to the conventional method, the throat of the wormhole is located at the point where the metric solutions are joined smoothly. Thus, exotic matters are not needed to sustain the throat. We consider the behavior of a minimally coupled scalar field to study the stability of the new wormhole. If we define the quasinormal mode of the scalar field as the purely ingoing flux at the throat of the wormhole, the stability of wormhole can be discussed in analogy with the argument that we use for the stability of a black hole. Because an analytic solution can not be found, we suggest a formalism to find quasinormal modes numerically. The crucial difference from the black hole case is that the coefficient of the second-order derivative term of the radial equation is expanded from n = -1, which is contrary to the black hole case where it is expanded from n = 0.

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

A Numerical Solution Method of the Boundary Integral Equation -Axisymmetric Flow- (경계적분방정식의 수치해법 -축대칭 유동-)

  • Chang-Gu,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 1990
  • A numerical solution method of the boundary integral equation for axisymmetric potential flows is presented. Those are represented by ring source and ring vorticity distribution. Strengths of ring source and ring vorticity are approximated by linear functions of a parameter $\zeta$ on a segment. The geometry of the body is represented by a cubic B-spline. Limiting integral expressions as the field point tends to the surface having ring source and ring vorticity distribution are derived upto the order of ${\zeta}ln{\zeta}$. In numerical calculations, the principal value integrals over the adjacent segments cancel each other exactly. Thus the singular part proportional to $\(\frac{1}{\zeta}\)$ can be subtracted off in the calculation of the induced velocity by singularities. And the terms proportional to $ln{\zeta}$ and ${\zeta}ln{\zeta}$ can be integrated analytically. Thus those are subtracted off in the numerical calculations and the numerical value obtained from the analytic integrations for $ln{\zeta}$ and ${\zeta}ln{\zeta}$ are added to the induced velocity. The four point Gaussian Quadrature formula was used to evaluate the higher order terms than ${\zeta}ln{\zeta}$ in the integration over the adjacent segments to the field points and the integral over the segments off the field points. The root mean square errors, $E_2$, are examined as a function of the number of nodes to determine convergence rates. The convergence rate of this method approaches 2.

  • PDF

Numerical Computations on the Hydrodynamic Forces by Internal Waves in a Sediment Pocket (퇴적 침전구에서 발생하는 내면파 유동에 의한 유체력 해석)

  • Kyoung Jo-Hyun;Kim Jang-Whan;Bai Kwang-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical method is developed to solve a two-dimensional diffraction problem for a body located in a sediment pocket where a heavier muddy water is trapped. In the present study, the wave exciting forces acting on a submerged body in the water-sediment interface by an incident wave is investigate. It is assumed that the heavier mud is trapped locally in a sediment pocket. A mathematical formulation is made in the scope of the potential theory. The fluid is assumed to be inviscid, incompressible and its motion irrotational. The boundary conditions on the unknown free surface and interface are linearized. As a method of solution, the localized finite-element method is adopted. In the method, the computation domain is reduced by utilizing the complete set of analytic solutions known in the infinite subdomain to be truncated by introduction of an appropriate juncture conditions. The main advantage of this method is that any complex geometry of the boundaries can be easily accommodated. Computations are carried out for mono-chromatic plane progressive surface waves normally incident on the domain. Numerical results are compared with those obtained by Lassiter based on Schwingers variational method. Good Agreements are obtained in general. Another numerical computations are made for the cases with and without a body in the sediment pocket.

  • PDF

Benefit·Cost Analysis of Combine Method Using Hollow Precast Concrete Column (중공 PC기둥 복합공법의 편익-비용 분석)

  • Kim, Jae-Yeob;Park, Byeong-Hun;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Because of the shortage of construction workers due to The rising labor costs and an aging labor force, construction time has been extended. As a solution, The construction time of high-rise buildings can be reduced by adopting precast concrete construction methods. Most relevant studies have focused on the development and structural analysis of such methods and not on their construction management. Therefore, this study focused on the construction management of the hollow precast concrete column (HPC) method. The objective of this study was to evaluate the performance of HPC formulations through the analytic hierarchy process and benefit-cost analysis. After a gap analysis of the available literature and expert interviews, the evaluation criteria were selected. A questionnaire survey was administered to professionals with ample experience in precast concrete construction for the pair-wise evaluation of the benefit and costs of the HPC method. The results show that the benefits of the HPC method outweighed its costs. Therefore, the HPC method is a suitable substitute for the half-slab method.

Parameter Study of Buckling Behavior of Steel Built-up Column (강재 조립 기둥의 좌굴 거동에 대한 매개변수 해석)

  • Kim, Jinyong;Kim, Sung Bo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.79-87
    • /
    • 2011
  • The parameter study of buckling behavior of steel built-up column under compression force is presented in this study. The shear deformation effects due to the bending moment and shear forces are considered for the H-shaped main members along the entire built-up column and batten member connecting double H-shaped main members. The parametric study is performed according to the length of the built-up column, the distance of the H-shaped main members and the number and type of cover plate for battens, respectively. The applicability of AISC design specification of normal and high tension bolted built-up column is investigated. The buckling loads for built-up columns are compared with those obtained from the analytic solution developed in this study, AISC specification, and finite element method based on the beam and plate element, respectively.

Analysis of Body Induced Current in Middle Frequency Range Using Quasi-Static FDTD (중간주파수 대역에서 준정적(Quasi-Static) FDTD 기법을 이용한 인체 유도전류 분석)

  • Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.141-149
    • /
    • 2009
  • In this paper, quasi-static FDTD method is implemented by FORTRAN programming, and it is used for analysis of body induced current in middle frequencies. The quasi-static FDTD program is validated by comparing the calculation result with analytic solution of the test model, to which it is difficult to apply conventional FDTD. It is confirmed that the time-step is reduced by $5.68{\times}10^6$ times. Using validated numerical technique, body induced current distribution in high resolution 3-D human model is calculated for 20[kHz] magnetic field exposure and 1[MHz] electric field exposure. Also, the effect of grounding condition of both feet on the distribution and amplitude of the induced current is analyzed. It is expected that this research can be applied to various fields including safety assessment of body induced current and development of diagnosis devices using bio-electricity.

Deducing environmentally conscious factors for apartment complex planning and weight evaluation (환경요소를 고려한 공동주택 단지계획요소 도출 및 가중치 평가)

  • Jung, Suk-Jin;Seo, Jung-Bum;Yoon, Seong-Hwan
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.51-56
    • /
    • 2016
  • Purpose: As declines in the quality of residential environments occur, such as urban heat island effect, tropical night phenomenon, and violations of right to light and privacy due to urban densification and high rise building, these problems are emerging as social issues. In order to improve these issues, design factors which consider environmental aspects must be selected when planning apartment complexes, and ways to reflect them in the planning phase must be explored. Method: In this study, the analytical hierarchy process(AHP) was used to deduce design factors that considered environmental elements during the planning of apartment complexes. Furthermore, the priority and weight for each evaluation index were assessed. The objective was to propose a guideline for planning apartment complexes by finding the best solution for each evaluation index using complex weight values. Result: Floor area ratio was selected as the most important evaluation criterion in the environmentally conscious evaluation index for apartment complex planning. The shape and placement of skylights were selected as the most important evaluation criteria in the sunshine environment for a pleasant residential environment. Ground surface cover design was selected as the most important criterion in the outdoor thermal environment index for improving the microclimate within cities and apartment complexes. Thus, the results of this study can serve as an investigation guideline that concerns policy and regulations, and as reference data that can be used in planning apartment complexes.