• Title/Summary/Keyword: Analysis on the Thermal characteristics

Search Result 1,721, Processing Time 0.037 seconds

A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles (철도차량용 IPMSM의 Water-cooling Jacket 설계 연구)

  • Park, Chan-Bae;Lee, Jun-Ho;Lee, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1475-1480
    • /
    • 2013
  • In this paper, the basic design study of a water-cooling jacket, which have reported no cases for applying to railway traction motors so far, were conducted for applying to Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. The basic thermal characteristics analysis of the 110kW-class IPMSM was performed by using 3-dimentional thermal equivalent network method. The necessary design requirements of the water-cooling jacket were derived by analyzing the results of the basic thermal properties. Next, the thermal characteristics analysis technique was established by using the equivalent model of the solenoid-typed pipe to be installed on the inside of the water-cooling jacket for 110kW-class IPMSM. Finally, a design model of 6kW-class water-cooling jacket was derived through the analysis of various design parameters.

Thermal Characteristics of Epoxy-Nanocomposites filled Several Types Nano Layered Silicate Particles (나노층상실리케이트가 충진된 에폭시-나노콤포지트의 열적특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.749-754
    • /
    • 2008
  • A large number of studies on the various characteristics of epoxy-layered silicate nanocomposites, such as electric and mechanical, morphology have been conducted and contributed to improve their characteristics. However, studies on the effects of its thermal conductivities in the thermal properties are not enough, even though there are some excellent evaluations for its insulation performances. Thermal properties will cause thermal degradation and significantly affect the reliability of these epoxy-layered silicate nanocomposites. In the results of the analysis of epoxy-layered silicate nanocomposites $T_g$ for various types of organoclays (10A, 15A, 20A, 30B, and 93A), it showed an excellent thermal property of 10A. Also, it represented low values in storage modulus and mechanical Tan (Delta) at a high temperature section 140$^{\circ}C$ and excellent thermal properties due to its movement to the high temperature section in the case of the property of 10A in the measurement of DMA elastics and mechanical losses. In the results of the measurement of thermal conductivities, power ultrasonic applications represented a significant increase in thermal conductivities in the case of the applications of power ultrasonic and planetary centrifugal mixers. Based on these results, it is necessary to perform related studies because it can be applied as useful materials for future power facilities applications in mold and impregnate insulation.

Analysis of Thermal Characteristics for the Fire Risk Assessment According to Partial Disconnection on the VCTF and IV Electric Wire (VCTF와 IV전선의 반단선에 의한 화재위험성 평가를 위한 열적특성 해석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Park, Jong-Young;Park, Young-Ho;Lee, Hyung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Many researches on fire risk for normal electric wiring have been pursued in advanced countries such as the USA and Japan, but comparative studies of the partial disconnection and normal state of electric wires have not been conducted. Detection system for the cause of partial disconnection is not developed and prevention countermeasure for electrical fire by the cause is not effective. Therefore, in this paper, partial disconnection characteristics on electric wires were derived and analyzed by experiment and electrical-thermal finite element method(Flux 3D) on the model wires which consist of VCTF(PVC insulated PVC sheathed Cap Tyre Flexible Cord, KS C 3304) and IV(lndoorwire PVC, KS C 3302). VCTF is used in wiring portable electric appliances and the IV is used indoors. Interrelationships between partial disconnection premonitory symptom and current were derived and analyzed by the characteristics based on experiments and thermal analysis for electric wire according to current under normal state and 200% overload state of rated current.

A Study on the Thermal Specific of Operational Spindle System of Machine Tool (공작기계 주축부 운전시 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.498-503
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design considering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective mettled in thermal-appropriate design.

  • PDF

A Study on the Thermal Specific of Operational Spindle System of Machine Tool by FEM (주축의 동적거동시 FEM을 이용한 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.396-400
    • /
    • 2003
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verifiedthe test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design..

  • PDF

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data

  • Zhou, Guang-Dong;Yi, Ting-Hua;Chen, Bin;Zhang, Huan
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.469-488
    • /
    • 2015
  • Thermal loads, especially thermal gradients, have a considerable effect on the behaviors of large-scale bridges throughout their lifecycles. Bridge design specifications provide minimal guidance regarding thermal gradients for simple bridge girders and do not consider transversal thermal gradients in wide girder cross-sections. This paper investigates the three-dimensional thermal gradients of arch bridge girders by integrating long-term field monitoring data recorded by a structural health monitoring system, with emphasis on the vertical and transversal thermal gradients of wide concrete-steel composite girders. Based on field monitoring data for one year, the time-dependent characteristics of temperature and three-dimensional thermal gradients in girder cross-sections are explored. A statistical analysis of thermal gradients is conducted, and the probability density functions of transversal and vertical thermal gradients are estimated. The extreme thermal gradients are predicted with a specific return period by employing an extreme value analysis, and the profiles of the vertical thermal gradient are established for bridge design. The transversal and vertical thermal gradients are developed to help engineers understand the thermal behaviors of concrete-steel composite girders during their service periods.

A Study on the Mechanical Characteristics of the Resistance Multi-spot Welded Joints (저항 다점용접부의 역학적 특성에 관한 연구)

  • 방한서;방희선
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.499-505
    • /
    • 2001
  • In order to classify the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not taxi-symmetric, unlike the cafe of single-spot welded joint, the solution domain for simulation should be three dimension. Therefore, in this paper, firstly, the three-dimensional thermal elasto-plastic program is developed by an iso-parametric finite element method. Secondly, from the results analyzed by developed program, this has clarified mechanical characteristics and their production mechanism on single and multi-spot waled joints. Moreover, it has been intended to make clear effects of pitch length on welding residual stresses, plastic strain of multi-spot welded joints.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim S.I.;Cho J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

Analysis of Thermal Characteristics and Insulation Resistance Based on the Installation Year and Accelerated Test by Electrical Socket Outlets

  • Kim, Kyung Chun;Kim, Doo Hyun;Kim, Sung Chul;Kim, Jae Ho
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.405-417
    • /
    • 2020
  • Background: Electrical socket outlets are used continuously until a failure occurs because they have no indication of manufacturing date or exchange specifications. For this reason, 659 electrical fires related to electrical socket outlets broke out in the Republic of Korea at 2018 only, an increase year on year. To reduce electrical fires from electrical socket outlets, it is necessary to perform an accelerated test and analyze the thermal, insulation resistance, and material properties of electrical socket outlets by installation years. Methods: Thermal characteristics were investigated by measured the temperature increase of electrical socket outlets classified according to year with variation of the current level. Insulation resistance characteristics was measured according to temperature for an electrical socket outlets by their years of use. Finally, to investigate the thermal and insulation resistance characteristics in relation to outlet aging, this study analyzed electrical socket outlets' conductor surface and content, insulator weight, and thermal deformation temperature. Results: Analysis showed, regarding the thermal characteristics, that electrical socket outlet temperature rose when the current value increased. Moreover, the longer the time that had elapsed since an accelerated test and installation, the higher the electrical socket outlet temperature was. With respect to the insulation resistance properties, the accelerated test (30 years) showed that insulation resistance decreased from 110 ℃. In relation to the installation year (30 years), insulation resistance decreased from 70 ℃, which is as much as 40 ℃ lower than the result found by the accelerated test. Regarding the material properties, the longer the elapsed time since installation, the rougher the surface of conductor contact point was, and cracks increased. Conclusion: The 30-year-old electrical socket outlet exceeded the allowable temperature which is 65 ℃ of the electrical contacts at 10 A, and the insulation resistance began to decrease at 70 ℃. It is necessary to manage electrical socket outlets that have been installed for a long time.