• Title/Summary/Keyword: Analysis of heat quantity

Search Result 142, Processing Time 0.028 seconds

A Study on the Performance of Rotary Heat Exchanger using Aluminum Finned Copper Tube Heat Pipe (동관-알루미늄 휜 회전형 히트파이프 열교환기의 성능에 관한 연구)

  • Park, K.H.;Lee, K.W.;Lee, K.J.;Chun, W.P.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.7-12
    • /
    • 2000
  • The purpose of this study is to develop heat transfer analysis program of heat pipe elements and design a revolving heat pipe exchanger by the performance experiment of hot air production by means of middle-temperature waste heat. Experimental variables are the revolution per minute, normal velocity of inlet air and the temperature of waste heat. The revolving heat exchanger has designed as $2^{\circ}$ in inclination angle of heat pipe bundle and as 20% in working fluid quantity and as water in working fluid. Experimental value of the total heat transfer coefficient was $20w/m^2-^{\circ}C$

  • PDF

Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe (스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석)

  • 이기우;노승용;박기호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

Analysis on Heat of Hydration for Height of Shell Concrete Pouring in Reactor Containment Building (원자로건물 외벽 타설 높이 산정을 위한 수화열 해석)

  • Kim, Jwa-Young;Park, Jong-Hyok;Lee, Han-Woo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.165-166
    • /
    • 2012
  • A thermal stresses by heat of hydration was analyzed according to a change of a pour height in reactor containment building. In case of more than 3.6m pouring height a crack index by heat of hydration analysis resulted in less than 1 because there is not a construction joint of vertical direction and for a self-restraint effect of circumferential section shape. Therefore detailed consideration on a mixture proportion of binder type, quantity in concrete and selection of a form in seasonal air temperature is needed for a control of tensile stress by heat of hydration.

  • PDF

A Study of Bubble Pump that is applied Solar Heating Water System (태양열 온수 시스템에 적용한 기포펌프의 동작특성에 관한 연구)

  • Park, G.T.;Song, L.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • Regarding the need of energy in advance and the depletion of fossil fuel energy, all researches around the world now are trying to extract energy from many alternative sources especially the renewable one. Solar, ocean tidal, wind and geothermal energy are renewable energy fields which many researches are focused on. This paper explains about effort to replace electric pump used in solar water heating system by bubble pump. The utilization of bubble pump in this system is very efficient since it needs heat energy for its operation that can be obtained easily. In addition, it can also simplify the construction of the system. Bubble pump also functions as a controller to circulate water inside the system. Before the installation of bubble pump, the special quality and performance of bubble pump should be analyzed. The result got from the analysis could show the fluctuation of water flow rate occurred because it sensitively reacts to the heat quantity. Here the heat quantity is taken from the solar that, as we know, is not stable in a whole day. Problems often occurred are the flow rate in this system is very low moreover it could be stop if the pressure exceeds the limit.

  • PDF

High-temperature Structural Analysis on the Small Scale PHE Prototype (소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Lee, H-Y;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high-temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype.

  • PDF

High-Temperature Structural Analysis on the Small-Scale PHE Prototype using Weld Properties (용접물성치를 고려한 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature gas cooled Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. Previous research on the high-temperature structural analysis of the small-scale PHE prototype had been performed only using parent material properties. In this study, high-temperature structural analysis using weld properties in weld zone was performed and the analysis results compared with the previous research.

High-Temperature Structural Analysis on the Small-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In order to properly evaluate the high-temperature structural integrity of the small-scale PHE prototype, it is very important to impose a proper constraint condition on its structural analysis model. For this effort, we tried to impose several constraint conditions on the structural analysis model and consequently fixed a proper and effective displacement constraints.

A Numerical Analysis of the Distribution of Temperature and Combustio Products I case of Compartment Fire (폐쇄공간 화재 발생시 온도 및 연소산화물의 분포에 관한 모델 해석)

  • 차형석;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • The first purpose of this study is to verify the application of computer modelling to a enclosed space fire. The second one is to determine temperature distribution for the three different ventilation types in case of a enclosed space fire. The third one is to find out the ventilation direction and ventilation quantity to remove effectively heat and combustion products generated by a fire in variable air volume(VAV) system. Firstly, compared with experimental results of Lawrence Livermore National Laboratory(LLNL), numerical results show good agreements. Secondly, among three different ventilation types, the numerical analyses show the highest temperature distribution in occupied zone(up to 1.8 m from bottom) from firing moment to 100 sec. when supply ducts are placed in ceiling and extract duct is placed close to the bottom on side walls. This is due to disadvantageous position of extract duct in ventilating high temperature air which rise because of buoyancy force. Thirdly, this study finds out effective ventilation direction and ventilation quantity to remove heat and combustion products generated by a fire by using VAV system. $CO_2$ concentration is used as a fire fume removal index. As soon as a fire happens, ventilation direction is changed in order to gather and drive out fire fumes. In case of three times ventilation quantity of ordinary one, $CO_2$ concentration and temperature have begun to decrease at 120 sec. after firing, i.e.fire fumes have begun to be removed.

  • PDF

A Study on the Internal Flow Patterns and Heat Transfer Characteristics for a Cylindrical Rotating Heat Pipe (원통형 회전 히트파이프의 내부 유동 및 열전달 특성에 관한 연구)

  • Lee, Jin Sung;Lee, Jae Jun;Kim, Chul Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1217-1228
    • /
    • 1998
  • In order to elucidate the operational characteristics of rotating heat pipes, the internal flow patterns and heat transfer performance are investigated. Flow patterns and its transition are studied with various rotational speeds by visualizing flows established inside a rotating tube. To verify those results of analysis, 2 heat pipes of the same geometries but fill charge rates of 7, 30% were manufactured and submitted to operating tests. Comparison of experimental results on heat transfer rate show a fairly good agreement with the analytical results. The analysis reveals that the optimum charge ratio is ranged in 4~7% depending on the quantity of thermal loads. but the heat pipe with 7% of fill charge ratio reached dry-out limitation at heat flux of $q^{{\prime}{\prime}}=6.2kW/m^2$ lower than that of analytic results. Transition of flow regime was well related to the correlation by Semena & Khmelev on transient centrifugal Froude Number Frc. But hysteresis phenomenon was observed in transition of flow regime, when the rotational speed was stepwisely changed in the way to undergo 1 cycle.

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by Heat Treatment Condition - Focused on discarded Bentonite by cooling using of Water - (소성조건에 따른 폐 벤토나이트의 포졸란 반응성에 관한 실험적 연구 - 주수냉각을 중심으로 -)

  • 장진봉;정민수;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.85-90
    • /
    • 2002
  • This study aims to propose a fundamental report for pozzolan reaction of discarded Bentonite by heat-treatment as concrete mineral admixture. As discarded bentonite is clay mineral to contain a great quantity a lot of $SiO_2$ and $Al_{2}O_{3}$, it is anticipated to reveal pozzolan reaction ability by heat-treatment. To find out pozzolan reaction ability of discarded Bentonite slurry by heat-treatment, the experiment is excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite slurry can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite slurry is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

  • PDF