• Title/Summary/Keyword: Analysis Technique

Search Result 16,507, Processing Time 0.049 seconds

Evaluating efficiency of Vertical MLC VMAT plan for naso-pharyngeal carcinoma (비인두암 Vertical MLC VMAT plan 유용성 평가)

  • Chae, Seung Hoon;Son, Sang Jun;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose : The purpose of the study is to evaluate the efficiency of Vertical MLC VMAT plan(VMV plan) Using 273° and 350° collimator angle compare to Complemental MLC VMAT plan(CMV plan) using 20° and 340° collimator angle for nasopharyngeal carcinoma. Materials & Methods : Thirty patients treated for nasopharyngeal carcinoma with the VMAT technique were retrospectively selected. Those cases were planned by Eclipse, PO and AcurosXB Algorithm with two 6MV 360° arcs and Each arc has 273° and 350° of collimator angle. The Complemental MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. For dosimetric evaluation, the dose-volumetric(DV) parameters of the planning target volume (PTV) and organs at risk (OARs) were calculated for all VMAT plans. MCSv(Modulation complexity score of VMAT), MU and treatment time were also compared. In addition, Pearson's correlation analysis was performed to confirm whether there was a correlation between the difference in the MCSv and the difference in each evaluation index of the two treatment plans. Result : In the case of PTV evaluation index, the CI of PTV_67.5 was improved by 3.76% in the VMV Plan, then for OAR, the dose reduction effect of the spinal cord (-14.05%) and brain stem (-9.34%) was remarkable. In addition, the parotid glands (left parotid : -5.38%, right : -5.97%) and visual organs (left optic nerve: -4.88%, right optic nerve: -5.80%, optic chiasm : -6.12%, left lens: -6.12%, right lens: -5.26%), auditory organs (left: -11.74%, right: -12.31%) and thyroid gland (-2.02%) were also confirmed. The difference in MCSv of the two treatment plans showed a significant negative (-) correlation with the difference in CI (r=-0.55) of PTV_54 and the difference in CI (r=-0.43) of PTV_48. Spinal cord (r=0.40), brain stem (r=0.34), and both salivary glands (left: r=0.36, right: r=0.37) showed a positive (+) correlation. (For all the values, p<.05) Conclusion : Compared to the CMV plan, the VMV plan is considered to be helpful in improving the quality of the treatment plan by allowing the MLC to be modulated more efficiently

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Analysis of Anatomical Conformity of Straight Antegrade Humeral Intramedullary Nail in Korean (한국인에서의 직선형 전향적 상완골 골수 내 금속정의 해부학적 적합성 분석)

  • Choi, Sung;Jee, Seungmin;Hwang, Seongmun;Shin, Dongju
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.6
    • /
    • pp.498-503
    • /
    • 2021
  • Purpose: The aim of this study were to find ideal entry point of straight antegrade humeral intramedullary nail (SAHN) for the treatment of proximal humerus fracture in Korean and to analyze anatomical conformity using computed tomography. Materials and Methods: From May 2014 to October 2016, the study was conducted retrospectively on 74 Korean patients who had taken computed tomography on both normal and affected shoulder joint as result of shoulder injury. The mean age of the patients was 64.5 years (range, 22-95 years). Radiologic evaluation was done using multiplanar reconstruction technique of the computer tomography on normal proximal humerus. We located ideal entry point of SAHN as the point where humerus intramedullary center axis and humeral head meet. Distance between the entry point and local anatomical landmark was measured. We defined the critical distance as the distance between entry point and the most medial point of the supraspinatus attachment site. For adequate fixation and avoidance of injury to rotator cuff, critical distance should be over 8 mm according to Euler, and we defined the critical type when it is less than 8 mm. Critical distance, sex, age, height, body weight, body mass index was evaluated for the statistical significance. Results: The ideal entry point was as follows: the mean anteroposterior distance, the sagittal distance to the lateral margin of bicipital groove, was 11.5 mm and the mean mediolateral distance, the coronal distance to the lateral margin of grater tuberosity, was 20.5 mm. The mean critical distance, distance from the entry point to the just medial to insertion of the supraspinatus tendon, was 8.0 mm. Critical type with critical distance less than 8 mm was found in 41 in 74 patients (55.4%). Conclusion: The ideal entry point of SAHN in Korean was located on 11.5 mm posteriorly from the lateral margin of bicipital groove and 20.5 mm medially from lateral margin of greater tuberosity. More than half of the cases were critical type. Since critical type can possibly cause rotate cuff injury during nail insertion on entry point, surgeon should consider anatomical variance before choosing surgical option.

Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System (무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지)

  • Min-Jun, Park;Chan-Seok, Ryu;Ye-Seong, Kang;Hye-Young, Song;Hyun-Chan, Baek;Ki-Su, Park;Eun-Ri, Kim;Jin-Ki, Park;Si-Hyeong, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2022
  • The purpose of this study is to detect the sorghum panicle using YOLOv5 based on RGB images acquired by a unmanned aerial vehicle (UAV) system. The high-resolution images acquired using the RGB camera mounted in the UAV on September 2, 2022 were split into 512×512 size for YOLOv5 analysis. Sorghum panicles were labeled as bounding boxes in the split image. 2,000images of 512×512 size were divided at a ratio of 6:2:2 and used to train, validate, and test the YOLOv5 model, respectively. When learning with YOLOv5s, which has the fewest parameters among YOLOv5 models, sorghum panicles were detected with mAP@50=0.845. In YOLOv5m with more parameters, sorghum panicles could be detected with mAP@50=0.844. Although the performance of the two models is similar, YOLOv5s ( 4 hours 35 minutes) has a faster training time than YOLOv5m (5 hours 15 minutes). Therefore, in terms of time cost, developing the YOLOv5s model was considered more efficient for detecting sorghum panicles. As an important step in predicting sorghum yield, a technique for detecting sorghum panicles using high-resolution RGB images and the YOLOv5 model was presented.

Monitoring of Concrete Deterioration Caused by Steel Corrosion using Electrochemical Impedance Spectroscopy(EIS) (EIS를 활용한 철근 부식에 따른 콘크리트 손상 모니터링)

  • Woo, Seong-Yeop;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.651-662
    • /
    • 2022
  • The electrochemical impedance spectroscopy(EIS) method was used to evaluate the concrete deterioration process related to chloride-induced steel corrosion with various corrosion levels(initiation, rust propagation and acceleration periods). The impressed current technique, with four total current levels of 0C, 13C, 65C and 130C, was used to accelerate steel corrosion in concrete cylinder samples with w/c ratio of 0.4, 0.5, and 0.6, immersed in a 0.5M NaCl solution. A series of EIS measurements was performed to monitor concrete deterioration during the accelerated corrosion test in this study. Some critical parameters of the equivalent circuit were obtained through the EIS analysis. It was observed that the charge transfer resistance(Rc) dropped sharply as the impressed current increased from 0C to 13C, indicating a value of approximately 10kΩcm2. However, the sensitivity of Rc significantly decreased when the impressed current was further increased from 13C to 130C after corrosion of steel had been initiated. Meanwhile, the double-layer capacitance value(Cdl) linearly increased from 50×10-6μF/cm2 to 250×10-6μF/cm2 as the impressed current in creased from 0C to 130C. The results in this study showed that monitoring Cdl is an effective measurement parameter for evaluating the progress of internal concrete damages(de-bonding between steel and concrete, micro-cracks, and surface-breaking cracks) induced by steel corrosion. The findings of this study provide a fundamental basis for developing an embedded sensor and signal interpretation method for monitoring concrete deterioration due to steel corrosion at various corrosion levels.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.

Deriving Key Risk Sub-Clauses which the Engineer of FIDIC Red Book Shall Agree or Determine according to Sub-Clause 3.7 -based on FIDIC Conditions of Contract for Construction, Second Edition 2017- (FIDIC Red Book의 Engineer가 합의 또는 결정해야할 핵심 리스크 세부조항 도출 -FIDIC Red Book 2017년 개정판 기준으로-)

  • Jei, Jae Yong;Hong, Seong Yeoll;Seo, Sung Chul;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.239-247
    • /
    • 2023
  • The FIDIC Red Book is an international standard contract condition in which the Employer designs and the Contractor performs the construction. The Engineer of FIDIC Red Book shall agree or determine any matter or Claim in accordance with Sub-Clause 3.7 neutrally, not as an agent of the Employer. This study aimed to derive Key Risk Sub-Clauses out of 49 Sub-Clauses that the Engineer of FIDIC Red Book recently revised in 18 years shall agree or determine according to Sub-Clause 3.7 using the Delphi method. A panel of 35 experts with more than 10 years of experience and expertise in international construction contracts was formed, and through total three Delphi surveys, errors and biases were prevented in the judgment process to improve reliability. As for the research method, 49 Sub-Clauses that engineers shall agree on or determine according to Sub-Clause 3.7 of the FIDIC Red Book were investigated through the analysis of contract conditions. In order to evaluate the probability and impact of contractual risk for each 49 Sub-Clause, the Delphi survey conducted repeatedly a closed-type survey three times on a Likert 10-point scale. The results of the first Delphi survey were delivered during the second survey, and the results of the second survey were delivered to the third survey, which was re-evaluated in the direction of increasing the consensus of experts' opinions. The reliability of the Delphi 3rd survey results was verified with the COV value of the coefficient of variation. The PI Risk Matrix was applied to the average value of risk probability and impact of each of the 49 Sub-Clauses and finally, 9 Key Risk Sub-Clauses that fell within the extreme risk range were derived.

Semantic Visualization of Dynamic Topic Modeling (다이내믹 토픽 모델링의 의미적 시각화 방법론)

  • Yeon, Jinwook;Boo, Hyunkyung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2022
  • Recently, researches on unstructured data analysis have been actively conducted with the development of information and communication technology. In particular, topic modeling is a representative technique for discovering core topics from massive text data. In the early stages of topic modeling, most studies focused only on topic discovery. As the topic modeling field matured, studies on the change of the topic according to the change of time began to be carried out. Accordingly, interest in dynamic topic modeling that handle changes in keywords constituting the topic is also increasing. Dynamic topic modeling identifies major topics from the data of the initial period and manages the change and flow of topics in a way that utilizes topic information of the previous period to derive further topics in subsequent periods. However, it is very difficult to understand and interpret the results of dynamic topic modeling. The results of traditional dynamic topic modeling simply reveal changes in keywords and their rankings. However, this information is insufficient to represent how the meaning of the topic has changed. Therefore, in this study, we propose a method to visualize topics by period by reflecting the meaning of keywords in each topic. In addition, we propose a method that can intuitively interpret changes in topics and relationships between or among topics. The detailed method of visualizing topics by period is as follows. In the first step, dynamic topic modeling is implemented to derive the top keywords of each period and their weight from text data. In the second step, we derive vectors of top keywords of each topic from the pre-trained word embedding model. Then, we perform dimension reduction for the extracted vectors. Then, we formulate a semantic vector of each topic by calculating weight sum of keywords in each vector using topic weight of each keyword. In the third step, we visualize the semantic vector of each topic using matplotlib, and analyze the relationship between or among the topics based on the visualized result. The change of topic can be interpreted in the following manners. From the result of dynamic topic modeling, we identify rising top 5 keywords and descending top 5 keywords for each period to show the change of the topic. Existing many topic visualization studies usually visualize keywords of each topic, but our approach proposed in this study differs from previous studies in that it attempts to visualize each topic itself. To evaluate the practical applicability of the proposed methodology, we performed an experiment on 1,847 abstracts of artificial intelligence-related papers. The experiment was performed by dividing abstracts of artificial intelligence-related papers into three periods (2016-2017, 2018-2019, 2020-2021). We selected seven topics based on the consistency score, and utilized the pre-trained word embedding model of Word2vec trained with 'Wikipedia', an Internet encyclopedia. Based on the proposed methodology, we generated a semantic vector for each topic. Through this, by reflecting the meaning of keywords, we visualized and interpreted the themes by period. Through these experiments, we confirmed that the rising and descending of the topic weight of a keyword can be usefully used to interpret the semantic change of the corresponding topic and to grasp the relationship among topics. In this study, to overcome the limitations of dynamic topic modeling results, we used word embedding and dimension reduction techniques to visualize topics by era. The results of this study are meaningful in that they broadened the scope of topic understanding through the visualization of dynamic topic modeling results. In addition, the academic contribution can be acknowledged in that it laid the foundation for follow-up studies using various word embeddings and dimensionality reduction techniques to improve the performance of the proposed methodology.

Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System (E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석)

  • FAN, LIU;Lee, Byunghyun;Choi, Ilyoung;Jeong, Jaeho;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.311-328
    • /
    • 2022
  • Because of the spread of smartphones due to the development of information and communication technology, online shopping mall services can be used on computers and mobile devices. As a result, the number of users using the online shopping mall service increases rapidly, and the types of products traded are also growing. Therefore, to maximize profits, companies need to provide information that may interest users. To this end, the recommendation system presents necessary information or products to the user based on the user's past behavioral data or behavioral purchase records. Representative overseas companies that currently provide recommendation services include Netflix, Amazon, and YouTube. These companies support users' purchase decisions by recommending products to users using ratings, purchase records, and clickstream data that users give to the items. In addition, users refer to the ratings left by other users about the product before buying a product. Most users tend to provide ratings only to products they are satisfied with, and the higher the rating, the higher the purchase intention. And recently, e-commerce sites have provided users with the ability to vote on whether product reviews are helpful. Through this, the user makes a purchase decision by referring to reviews and ratings of products judged to be beneficial. Therefore, in this study, the correlation between the product rating and the helpful information of the review is identified. The valuable data of the evaluation is reflected in the recommendation system to check the recommendation performance. In addition, we want to compare the results of skipping all the ratings in the traditional collaborative filtering technique with the recommended performance results that reflect only the 4 and 5 ratings. For this purpose, electronic product data collected from Amazon was used in this study, and the experimental results confirmed a correlation between ratings and review usefulness information. In addition, as a result of comparing the recommendation performance by reflecting all the ratings and only the 4 and 5 points in the recommendation system, the recommendation performance of remembering only the 4 and 5 points in the recommendation system was higher. In addition, as a result of reflecting review usefulness information in the recommendation system, it was confirmed that the more valuable the review, the higher the recommendation performance. Therefore, these experimental results are expected to improve the performance of personalized recommendation services in the future and provide implications for e-commerce sites.

A study on the calibration characteristics of organic fatty acids designated as new offensive odorants by cryogenic trapping-thermal desorption technique (유기지방산 신규악취물질에 대한 저온농축 열탈착방식 (Thermal desorber)의 검량특성 연구)

  • Ahn, Ji-Won;Kim, Ki-Hyun;Im, Moon-Soon;Ju, Do-Weon
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.488-497
    • /
    • 2009
  • In this study, analytical methodology for several organic fatty acids (OFA: propionic acid (PA), butyric acid (BA), isovaleric acid (IA), and valeric acid (VA)) designated as new offensive odorants in Korea (as of year 2010) was investigated along with some odorous VOCs (styrene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol). For this purpose, working standards (WS) containing all of these 13 compounds were loaded into adsorption tube filled with Tenax TA, and analyzed by gas chromatography (GC) system thermal desorber interfaced with. The analytical sensitivities of organic fatty acids expressed in terms of detection limit (both in absolute mass (ng) and concentration (ppb)) were lower by 1.5-2 times than other compounds (PA: 0.24 ng (0.16 ppb), BA: 0.19 ng (0.11 ppb), IA: 0.15 ng (0.07 ppb), and VA: 0.28 ng (0.13 ppb)). The precision of BA, IA, and VA, if assessed in terms of relative standard error (RSE), maintained above 5%, while the precison of other compounds were below 5%. The reproducibility of analysis improved with the aid of internal standard calibration (PA: $1.1{\pm}0.4%$, BA: $10{\pm}0.46$, IA; $12{\pm}0.3%$, VA: $4{\pm}0.1%$), respectively. The results of this study showed that organic fatty acid can be analyzed using adsorption tube and thermal desorber in a more reliable way to replace alkali absorption method introduced in the odor prevention law of the Korea Ministry of Environment (KMOE).