• 제목/요약/키워드: Analysis Domain

검색결과 5,835건 처리시간 0.033초

도메인 분석의 신뢰성 향상을 위한 도메인 분류와 복잡도 측정에 관한 연구 (A Study for Domain Categorization and Estimation of Complexity for Reliability Improvement of Domain Analysis)

  • 이은서
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2016
  • 도메인 분석은 신뢰성 있는 프로젝트 개발의 중요한 요소가 된다. 도메인 분석에서 발생되는 오류는 전체 시스템에 영향을 주게 되고, 그 결과 고객의 만족도가 낮아진다. 따라서 요구사항 단계에서 신뢰성 있는 분석을 위하여 도메인의 특성을 분석할 수 있는 방법이 필요하게 된다. 본 논문에서는 이와 같은 문제를 해결하기 위하여 도메인 분석의 신뢰성 향상을 위한 도메인 분류와 복잡도 측정방법을 제시하고자 한다.

Domain Analysis of Device Drivers Using Code Clone Detection Method

  • Ma, Yu-Seung;Woo, Duk-Kyun
    • ETRI Journal
    • /
    • 제30권3호
    • /
    • pp.394-402
    • /
    • 2008
  • Domain analysis is the process of analyzing related software systems in a domain to find their common and variable parts. In the case of device drivers, they are highly suitable for domain analysis because device drivers of the same domain are implemented similarly for each device and each system that they support. Considering this characteristic, this paper introduces a new approach to the domain analysis of device drivers. Our method uses a code clone detection technique to extract similarity among device drivers of the same domain. To examine the applicability of our method, we investigated whole device drivers of a Linux source. Results showed that many reusable similar codes can be discerned by the code clone detection method. We also investigated if our method is applicable to other kernel sources. However, the results show that the code clone detection method is not useful for the domain analysis of all kernel sources. That is, the applicability of the code clone detection method to domain analysis is a peculiar feature of device drivers.

  • PDF

샘플링율이 맥박변이도 시간 및 주파수 영역 분석에 미치는 영향 (An Effect of Sampling Rate to the Time and Frequency Domain Analysis of Pulse Rate Variability)

  • 양윤라;신항식
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1247-1251
    • /
    • 2016
  • This study aims to investigate the effect of sampling frequency to the time domain and frequency domain analysis of pulse rate variability (PRV). Typical time domain variables - AVNN, SDNN, SDSD, RMSSD, NN50 count and pNN50 - and frequency domain variables - VLF, LF, HF, LF/HF, Total Power, nLF and nHF - were derived from 7 down-sampled (250 Hz, 100 Hz, 50 Hz, 25 Hz, 20 Hz, 15 Hz, 10 Hz) PRVs and compared with the result of heart rate variability of 10 kHz-sampled electrocardiogram. Result showed that every variable of time domain analysis of PRV was significant at 25 Hz or higher sampling frequency. Also, in frequency domain analysis, every variable of PRV was significant at 15 Hz or higher sampling frequency.

도메인 분석(domain analysis)에 관한 이론적 고찰 (Theoretical Study on Domain Analysis)

  • 유영준
    • 한국문헌정보학회지
    • /
    • 제40권1호
    • /
    • pp.139-162
    • /
    • 2006
  • 이 연구에서는 도메인분석에 대해서 이론적으로 고찰함으로써 문헌정보학적 관점에서의 지식이론과 문헌정보학의 이론적 틀을 제시함과 동시에 문헌정보학의 연구방법론에 일반원칙을 제시하였다. 도메인분석에서 핵심적인 개념은 도메인을 구성하는 주제지식과 그 지식을 공유하는 담론 커뮤니티라고 할 수 있다. 따라서 도메인의 정의를 제시하고 도메인을 존재론적. 인식론적. 사회학적 차원에서 살펴보았으며, 도메인분석에서 이용할 수 있는 11가지 연구방법을 제시하였다. 그리고 도메인분석이 문헌정보학에서 가지는 함의를 사회-인지적 관점과 실용적 사실주의의 입장에서 검토하였다.

다방향 불규칙파중의 인장계류식 해양구조물의 시간영역 해석 (Time Domain Analysis of a Tension Leg Platform in Multi-Directional Irregular Waves)

  • 이창호;김철현
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.36-41
    • /
    • 2006
  • The main object of this study is to develop an accurate and convenient method for the response analysis of offshore structures in real sea states. A numerical procedure is described for predicting the motion responses and tension variations of the ISSC TLP in multi-directional irregular waves. The developed numerical approach in the frequency domain is based on acombination of the three dimensional source distribution method, the dynamic response analysis method, and the spectral analysis method. Frequency domain analysis in the multi-directional irregular waves is expanded to a time domain analysis by using a convolution integral after obtaining the impulse response by Fourier transformation. The results of the comparison between responses in the frequency and time domain confirmed the validity of the proposed approach.

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

무한요소를 사용한 지반-구조물 상호작용계의 시간 영역 지진응답해석 (Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements)

  • 김두기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.107-112
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far-field soil. The dynamic stiffness matrices of the far-field region formulated in frequency domain using the present method can be easily transformed into the corresponding matrices in time domain. Hence the response can be analytical computed in time domain. Example analysis has been carried out to verify the present method for an embedded block in a multi-layered half-space. The present methods can be easily extended to the nonlinear analysis since the response analysis is carried out in time domain.

  • PDF

추상화계층에 기반한 작업영역분석의 모델링 개념 및 적용 원칙 (Work Domain Analysis Based on Abstraction Hierarchy: Modelling Concept and Principles for Its Application)

  • 함동한
    • 대한안전경영과학회지
    • /
    • 제15권3호
    • /
    • pp.133-141
    • /
    • 2013
  • As a work analysis technique, Work Domain Analysis (WDA) aims to identify the design knowledge structure of a work domain that human operators interact with through human-system interfaces. Abstraction hierarchy (AH) is a multi-level, hierarchical knowledge representation framework for modeling the functional structure of any kinds of systems. Thus, WDA based on AH aims to identify the functional knowledge structure of a work domain. AH has been used in a range of work domains and problems to model their functional knowledge structure and has proven its generality and usefulness. However, many of researchers and system designers have reported that it is never easy to understand the concepts underlying AH and use it effectively for WDA. This would be because WDA is a form of work analysis that is different from other types of work analysis techniques such as task analysis and AH has several unique characteristics that are differentiated from other types of function analysis techniques used in systems engineering. With this issue in mind, this paper introduces the concepts of WDA based on AH and offers a comprehensive list of references. Next, this paper proposes a set of principles for effectively applying AH for work domain analysis, which are developed based on the author's experiences, consultation with experts, and literature reviews.

시간영역법에 의한 강제동요시 동유체력 해석 (Linear Time Domain Analysis of Radiation Problems)

  • 공인영;이기표
    • 대한조선학회지
    • /
    • 제24권4호
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF

심근허혈검출을 위한 심박변이도의 시간과 주파수 영역에서의 특징 비교 (Comparison of HRV Time and Frequency Domain Features for Myocardial Ischemia Detection)

  • 전설위;장진흥;이상홍;임준식
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.271-280
    • /
    • 2011
  • 심박 변이도 (HRV) 분석은 심근허혈 (MI)를 평가하기 위한 편리한 도구이다. HRV에 대한 분석법은 시간 영역과 주파수 영역 분석으로 나눠질 수 있다. 본 논문은 단기간의 HRV 분석에 있어서 웨이블릿 변환을 주파수 영역 분석과 시간 영역 분석 비교하기 위하여 사용하였다. ST-T와 정상 에피소드는 각각 European ST-T 데이터베이스와 MIT-BIH Normal Sinus Rhythm 데이터베이스에서 각각 수집되었다. 한 에피소드는 32개 연속하는 RR 간격으로 나눠질 수 있다. 18개 HRV 특징은 시간과 주파수 영역 분석을 통하여 추출된다. 가종 퍼지소속함수 신경망 (NEWFM)은 추출된 18개의 특징을 이용하여 심근허혈을 진단하였다. 결과는 보여주는 평균 정확도로부터 시간영역과 주파수영역의 특징은 각각 75.29%와 80.93%이다.