• Title/Summary/Keyword: Anaerobic digestion gas

Search Result 151, Processing Time 0.021 seconds

Generation of Hazardous Gas and Corrosion Originated from Anaerobic Digestion of Process Water in OCC Recycling Mill (골판지 재활용 공정수의 혐기성 분해에 따른 유해 기체의 생성과 부식)

  • Park, Dae-Sik;Ryu, Jeong-Yong;Song, Bong-Keun;Seo, Yung-Bum;Sung, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • There are accumulations of remained chemical additives and contaminants in the process water of semi-closed linerboard mill. High temperature of the process water aggravates the anaerobic digestion of contaminated process water and causes the generation of hazardous gases, which are from the biological reaction of varied additives and contaminants. The hydrogen sulfide in the gases easily combine with moisture in the air, and become sulfuric acid, which causes corrosion of paper machinery. This hydrogen sulfide is from the reduction of sulfate ions in the process water, and the sulfate ions are mostly from the alum. We changed the alum to PAC (Poly Aluminum Chloride). The results were preventing generation of hydrogen sulfide, and equivalent sizing effect by the use of PAC.

A Study on the Treatment of Phenol Wastewater in an Anaerobic Fluidized-Bed Reactor (혐기성 유동층 반응기에서 페놀 폐수 처리에 관한 연구)

  • 박동일;안재동;신승훈;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.96-103
    • /
    • 1996
  • The objectives of this study were to examine the biodegradation of phenol using the anaerobic fluidized bed reactor(AFBR). Mixed microorganisms were selected from the anaerobic digestion tank, and could be adapted to high concentration of phenol by increasing the phenol concentration 600-3600 mg/l step by step. The results were summarized as follows: 1. The average removal efficiency of phenol was 90%, decreased by increasing concentration of phenol, and then a shock range was 1200~2400 ppm. 2. The production rate of biogas in overall limits was proportional to the concentration of influent phenol. 3. At steady state, compositions of gases were $CH_4$ 55~60%, $C0_2$ 34~43%, respectively. These were similar to that of the theoretical estimates. 4. The production rates of biogas and methane per the molarity of phenol removed were linearly increased, 56.45 l gas/mol-phenol and 29.20 l $CH_4/mol$-phenol. Using this biogas, the recoverable energy was 269.1 kcal/mol phenol. It was 120.2 kcal/g-COD, transforming into the chemical oxygen demand. 5. The bulk of microorganisms existed in suspended section of fluidized bed with type of biofilm and its concentration was 340 mg/g-media. In conclusion, the anaerobic treatment of pure phenol was possible and its removal efficiency, introducing the AFBR, was successful. Also toxic organic compound such as phenol was biodegradable and was recoverable as resource of energy.

  • PDF

A Proposal of Sequencing the Combined Processes for Resources Recovery and Nitrogen Removal from Piggery Waste (슬러리형 돈사폐수에서 자원회수와 질소제거를 위한 순차적 결합공정 제안)

  • Hwang, In-Su;Min, Kyung-Sok;Bae, Jin-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The combined ADEPT(Anaerobic Digestion Elutriated Phased Treatment)-SHARON(Single reactor system for High Ammonium Removal Over nitrite)-ANAMMOX(Anaerobic ammonium oxidation) processes were operated for resources recovery and nitrogen removal from slurry-type piggery waste. The ADEPT process operated at an acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by the hydrolysis were 13% and 0.19 $gSCOD_{prod.}/gVS_{feeding}$, respcetively. Also, the acid production rate was 0.80 $gVFAs/gSCOD_{prod}$. In methanogenic reactor, the gas production rate and methane content were 2.8 L/day($0.3m^3CH_4/kgCOD_{removal}@STP$) and 77%, respectively. With these operating condition, the removals of nitrogen and phosphorus were 94.1% as $NH_4-N$(86.5% as TKN) and 87.3% as T-P respectively.

The Treatment of Source Separated Food Waste by Mesophilic Anaerobic Digestion System with Leachate Recirculation (중온 침출수 재순환 혐기성 소화 시스템을 이용한 음식물류 폐기물 처리)

  • Cho, Chan-Hui;Lee, Byonghi;Lee, Yong-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • In this study, mesophilic anaerobic digestion of source separated food waste was carried out by leachate recirculation system and methane gas was produced. Two systems - system A and B were fabricated and placed within water bath to maintain $36^{\circ}C$. Each system was comprised of an anaerobic bioreactor and a leachate tank. Leachate in bioreactor was separated through the screen located at 30 mm above the bottom and a pump was installed to transfer collected leachate to the leachate tank. Everyday, 2.5 L of the leachate was pumped from the bioreactor to the leachate tank for 30 min and transferred leachate was pumped back to the top of the bioreactor for 30min, sequentially. Source separated food waste used for this experiment was washed by water before transferring to the laboratory. Transferred food waste was warmed to $36^{\circ}C$ before being fed to bioreactors. System A was fed to 49.1 g VS (Volatile Solids) and System B was fed to 54.0 g VS at every two weeks, respectively. $NH_4{^+}-N$ and salinity were monitored to see the inhibition toward anaerobic bioreaction and it was found that concentrations of these materials were not high enough to affect the bioreaction. Although the food waste was fed biweekly for 112 days and 140 days at system A and B, respectively, there was no sludge withdrawal from each system. Average methane productions rates were 0.439 L $CH_4/g$ VS and 0.368 L $CH_4/g$ VS for system A and B, respectively.

A Study on the Effect of Food size and Washing rate on the Mixed Digestion of food Waste and Sewage Sludge (음식물쓰레기의 슬러지 병합처리에 있어서 입경 및 세척율의 영향)

  • 최성문;김은호;성낙창;김정권;윤태경;임영석
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.84-90
    • /
    • 2000
  • 5L laboratory-scale anaerobic digester was used to study the effects of food size and washing rate of food waste on the mixed digestion with sewage sludge. Food waste was crushed with particle diameters of 4mm and 2mm and washed two to three times, and seven to eight times before feeding the batch digester. The digester with crushed of washed food waste showed better performance than that with uncrushed of unwashed to produce methane gas of reduce volatile solids. The digester with 2mm food waste showed 17.4% higher VS/TS reduction rate and 18ml higher methane production rate per gram VS input than that with uncrushed food waste, where VS and TS are volatile solid and total solids in the liquid effluent, respectively. Also food waste crushed eight times gave 8% higher VS/TS reduction rate and 11ml higher methane production rate per gram VS input than unwashed food waste.

  • PDF

Trends of Green Policies of Biogas Renewable Technology using POME in Malaysia (말레이시아 팜오일폐수 POME(Palm Oil Mill Effluent)를 이용한 바이오가스 신재생에너지기술 그린정책 동향)

  • Park, Young Gyu
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.571-586
    • /
    • 2018
  • The Malaysian biogas upgrading technologies and policies were examined. In Malaysia, the regulation of palm oil mill effluent (POME) has been enforced to reduce the biochemical oxygen demand to 20 ppm and the biogas capture in the palm oil mills have been recently enforced for renewable energy. A huge amount of organic waste is produced from POME, and 80 million tons from palm oil trees, every year. Due to the renewable energy trends, the Malaysian government is modifying the use of biogases as fuels in favor of their conversion into compressed natural gas (CNG) and other chemicals; various green policies are being promoted because of many advantages of the organic substances. The Korean policies for biogas are a good model for exporting environmental plants after upgrading the digestion and purification technologies. Therefore, this article introduces the current status of POME and biogas production in Malaysia, it could encourage creating a new market for biomethane.

Effect of Hydraulic Retention Time (HRT) on the Hydrogen Production and Its Dynamic Characteristics in the Anaerobic Digestion Process Using Clostridium beijerinckii Donker 1926 (Clostridium beijerinckii Donker 1926을 이용한 혐기성 소화공정에서 체류시간 변화에 의한 수소 생산과 동력학적 특성)

  • Jeong, Tae-Young;Cha, Gi-Cheol;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.162-167
    • /
    • 2007
  • Hydrogen production and its dynamics were investigated in the continuous anaerobic digestion process using Clostridium beijerinckii Donker 1926. In this work, glucose was used as a substrate and hydraulic retention times (HRT) were 0.5, 0.25 or 0.125 day. The removal efficiency of carbohydrate was over 99% under all of HRT conditions. As HRT was shorter, COD removal efficiency became lower while hydrogen content in the total gas and hydrogen production rate became higher. The cell growth yield and hydrogen production yield were 0.27 g-VSS/g-glucose and 0.26 L/g-glucose, respectively, at the steady state. It is expected that the microorganism is able to produce hydrogen when used in the wastewater treatment containing carbohydrate such as glucose. Also, the results in this study could be applied to the actual hydrogen gas production, a promising alternative energy.

Treatment of Seafood Wastewater using an Improved High-rate Anaerobic Reactor (개선된 고율혐기성 공정을 이용한 수산물 가공폐수처리)

  • Choi, Byeong-Yeong;Choi, Yong-Bum;Han, Dong-Jun;Kwon, Jae-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7443-7450
    • /
    • 2014
  • To resolve shortcomings of high-rate anaerobic processes, such as high upward flow velocity, this study sought to improve the structure of the high-rate anaerobic reactor and evaluate its performance. The improved reactor was manufactured by adjusting the diameter and dividing the reactor into three parts. The evaluation of the structurally improved reactor revealed that the reactor could stabilize a single circuit, and prevent the accumulation of solid matter and leakage of microbes, thereby stabilize the microbes. In the process of anaerobic digestion, an increase in pH and alkalinity within the reactor was presumably attributed to bicarbonate created in the process of organic matter decomposition and due to the re-dissolution of some biogas. To maintain a high rate of organic matter removal, the reactor should be operated with more than 9 hrs of HRT and an organic matter load of under $10.kgTCODcr/m^3{\cdot}d$. The methane gas generated in the anaerobic digestion process showed a high content of 65~83 % at the organic matter load of over $7.7kgTCODcr/m^3{\cdot}d$. per removal of CODcr. The methane quantity was generated at $0.10{\sim}0.23m^3CH_4/kgCOD_{rem}$, showing that it was smaller than the theoretical methane generation amount (0.35) in the STP state. In the latter part of high-rate anaerobic process, an advanced treatment process was required to remove nitrogen.

A Feasibility Study for Renewable Energy from Sewage Sludge Biogas (하수슬러지 Biogas의 신재생에너지화 타당성 연구)

  • Kang, Ho;Lee, Hye Mi;Cho, Sang Sun;Park, Sun Uk;Jeong, Ji Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.754-760
    • /
    • 2010
  • This study was carried out not only to evaluate optimal operating condition to increase biogas production, but also to estimate feasibility of renewable energy from anaerobic digester of sewage sludge. Semi- continuous Fed and Mixed Reactors (SCFMRs) were operated in various condition to quantify the reactor variables. The result of SCFMR operation showed that the biogas productivity and total volatile solids (TVS) removal of total solids (TS) 4% reactor at hydraulic retention time (HRT) 20 days with Organic Loading Rate (OLR) of $1.45kg/m^3-d$ were $0.39m^3/m^3-d$ and 26.7%, respectively which was two times higher than that of TS 2.5% reactor. Consequently the daily biogas production of $20,000m^3$ would be possible from the total volume of $52,000m^3$ of anaerobic digesters of the municipal wastewater treatment plant in D city. In feasibility study for the Biogas utilization, combined heat and power system (CHP) and CNG gasification were examined. In case of CHP, the withdrawal period of capital cost for gas-engine (GE) and micro gas-turbine (MGT) were 7.7 years and 9.1 years respectively. biogas utilization as Clean Natural Gas (CNG) shows lower capital cost and higher profit than that of CHP system. CNG gasificaion after biogas purification is likely the best alternative for Biogas utilization which have more economic potential than CHP system. The withdrawal period of capital cost appeared to be 2.3 years.

Effect of Sludge Conditioner on Dewaterability of Sludge Produced from the Anaerobic Digestion of Food Waste (음식물 쓰레기의 혐기성 소화 슬러지의 응집 및 탈수 특성에 미치는 영향)

  • Park, Jong-Bu;Choi, Sung-Su;Park, Seung-Kook;Hur, Hyung-Woo;Han, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.104-110
    • /
    • 2001
  • In this study, the effect of physico-chemical variables on sludge conditioning was determined to enhance dewaterability of effluent produced from the thermophilic anaerobic digestion of food waste. The gas production rate and methane content during the anaerobic digestion of food waste were $1.1m^3/kg$ VS and 63%, respectively, and the biodegradability of volatile solids was 87.5%. The concentrations of CODcr, TKN and TP of effluent from digestor were 18,500mg/L, 2,800mg/L, and 582mg/L, respectively. At the jar test to screen the flocculant for the dewatering of effluent from digestor, $FeCl_3$ and strong cationic polymer were effective on making flocs in the effluent. The condition of flocculation of effluent were 500mg/L of $FeCl_3$ and 50-100 mg/L of strong cationic polymer, respectively. As the result of measuring of dewaterability potential of effluent to determine the mixing ratio between $FeCl_3$ and polymer by capillary suction time(SCT), optimum condition was 500mg/L of $FeCl_3$ and 80mg/L of strong cationic polymer.

  • PDF