• Title/Summary/Keyword: Anaerobic digestion gas

Search Result 151, Processing Time 0.029 seconds

A Study on the Sludge Reduction and Biogas Production through a Two-phase Anaerobic Digestion Process (이상 혐기성 소화 공정을 통한 슬러지 발생량 저감과 바이오가스 생산에 관한 연구)

  • Woo, Mi-Hee;Han, Gee-Bong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.894-899
    • /
    • 2010
  • We coordinated the experiments with ozone pretreatment and two-phase anaerobic digestion using solid-liquid separation to raise the efficiency of sludge volume reduction and obtained the following results. The pre-treatment with ozone reduced the solid concentration in the average of TSS $8.3{\pm}2.0%$ TSS and $9.2{\pm}}2.8%$ VSS. Of the organic material, TCOD decreased $5.1{\pm}2.4%$, but SCOD showed $72{\pm}6.5%$ increased, which was due to destruction of the cell wall and dissolution of icell media by the powerful oxidative stress of ozone. During the two-phase anaerobic digestion process, we achieved the reduction of $21.5{\pm}3.4%$ TSS, $20.2{\pm}8.4%$ VSS, $32.1{\pm}7.9%$ TCOD and $22.1{\pm}7.2%$ SCOD in average. The maximum methane gas production were 177.6 mL per g TSS, 210.8 mL per g VSS, 127.0 mL per g TCOD and 1452.0 mL per g SCOD, respectively. Solid material reduction through the two-phase anaerobic digestion and MLE (Modified Ludzack-Ettinger) processes were 93.8% of TSS and 92.0% of VSS. We concluded that suggested two-phase anaerobic digestion and MLE process could achieve the reasonable production of biogas and a maximum reduction of the sludge volume.

Pilot-scale Study for Pulse Power Pretreatment of Waste Activated Sludge (Pulse Power를 이용한 폐활성슬러지 전처리의 파이럿 규모 연구)

  • Yoo, Hee Chan;Hong, Seung Mo;Choi, Han Na
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.71-81
    • /
    • 2005
  • Anaerobic digestion is employed worldwide as the oldest and most important process for sludge stabilization. An additional advantage is the production of methane during anaerobic digestion. However, the waste activated sludge(WAS) has poor anaerobic degradability and less gas production due to the cell wall of bio-solid. In order to improve and enhance stabilization and dewatering of the WAS, a number of pretreatment processes have been developed and investigated. In this research, a pilot-scale study of pulse power pretreatment was performed to improve anaerobic degradability and dewaterability of the WAS. A pilot plant was designed and operated based on a previous laboratory study. Change of the sludge characteristics by pulse power pretreatment was estimated to assess the increasing soluble organics. The increased soluble organics could be used as a good substrate in the anaerobic digesion process. Gas production and methane potential of the anaerobic digestion were estimated as the parameters of anaerobic degradability. For evaluation of the dewaterability of pretreated WAS, capillary suction time(CST) and specific resistance were measured. The efficiency of energy recovery was also estimated by calculating energy balance.

  • PDF

Study on bio-gas production efficiency from industrial organic waste (산업계 유기성폐기물 바이오가스 생산 효율에 관한 연구)

  • Lee, Horyeong;Jin, Hyoeon;Shin, Daeyewn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.629-636
    • /
    • 2012
  • This study focuses on the feasibility of bio-gas production using anaerobic digestion by measuring methane generation and biodegradability through the BMP test of industrial organic wastes. Organic wastes consist of entrails of pigs and organic residues of rumen generated from slaughter houses, wastewater sludge from slaughter waste water, fish offal and residues of vegetables from public wholesale markets, and wastewater sludge from the process of wastewater treatment in paper mill. The cumulative methane production by BMP test ranges from 149.3 ml/g-VS to 406.6 ml/g-VS and this is similar to methane generation of the normal wastewater sludge and food waste. As a result of measurement of biodegradability, wastewater sludge (S1 ~ S4) is low, ranging from 27.1% to 58.9 % and organic residues of rumen (G1) is low at 49.6 %. In conclusion, it turned out that raising the hydrolysis by various pre-treatments is necessary in order to produce bio-gas by using industrial organic wastes.

A Study on the Treatment of Distillery Wastewater by Single-phase and Two-phase Anaerobic Digestion (단상(單相) 및 2상(相) 혐기성(嫌氣性) 소화(消化)에 의한 주정폐수(酒精廢水) 처리(處理)에 관한 연구(硏究))

  • Choung, Young Kyoo;Rah, Seung Woo;Park, Joon Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1993
  • The objectives of this paper are to present data to illustrate how an advanced digestion process, two-phase digestion, can provide superior performance in terms of waste stabilization efficiency and net energy recovery. As the result, it is possible to separate enrichment cultures of acidogenic and methanogenic organisms in isolated environments by kinetic control involving manipulation of dilution rates. In single-phase digestion process, HRT and COD loading for effective operation were 14.29 days and 2.33kg $COD/m^3$ day, but two-phase digestion may be conducted efficiently at 7 days of HRT and 5.71kg $COD/m^3$ day of loading. Data from this studies showed that the two-phase process is better than single-phase digestion under all test conditions when compared on the bases of gas yield and production rate, reductions of COD and VS, buffer capacity, and unconverted volatile acids in the effluent.

  • PDF

Effects of Reactor Configuration on Upflow Anaerobic Sludge Digestion (반응조 형상이 상향류 혐기성 슬러지 소화에 미치는 영향)

  • Kim, Daeyoung;Kim, Heejun;Park, Kiyoung;Choi, Younggyun;Chung, Taihak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.550-558
    • /
    • 2003
  • Digestion of primary sludge was conducted to evaluate the effects of reactor configuration using UAD, CUAD, TPAD, and semi-continuos CSTR. Highest VSS reduction and gas production were obtained in CUAD at all HRT. More efficient digestion was accomplished in upflow digesters compared to TPAD and CSTR. Higher thickening of solids in reactor and longer solids retention were main reasons for the enhanced digestion in CUAD and UAD. Performance based on the SRT of CUAD was nearly identical to that of UAD. However, those of TPAD and CSTR were lower than that of CUAD. Particulate and soluble organics in upflow reactors were well adsorbed due to secreted extracellular polymeric substances from the sludge granules. These might result in close proximity of microorganisms and substrates and enhanced hydrolysis. Additionally, diverse anaerobic microorganisms and neutral pH in upflow reactor could induce more activity of hydrolytic enzymes and sludge granules might offer lower thermodynamic energy state. While, excessive mixing in CSTR could break conglomerates of enzymes and substrates into fine particles, which resulted in lowered hydrolysis. Low pH level in acid fermenter of TPAD lowered hydrolysis of the particulate substrates.

Evaluation of Anaerobic Fermentation and Nitrate Removal Efficiency of Sewage Sludge Pre-treated with Electrolysis (전기분해 전처리 슬러지의 혐기성 소화 및 질산염 제거효율 평가)

  • Kim, Jaehyung;Jeon, Hyeyeon;Pak, Daewonk
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This study was performed with electrolysis treatment method for improving anaerobic digestion gas production efficiency in a sewage sludge, thereby confirmed in anaerobic digestion production and denitrification effect. As a result, solubilization was increased by increasing treatment time of electrolysis and current density, also showed to be 9.02% with 10 mA/cm2 of current density in 4 mm electrode distance. Based on the results of BMP test used the above experiment, methane production was 0.49 L CH4/g VS, and increased by 88.4% compared with control groups. As for the results of denitrification using the sewage sludge treated with the same conditions, denitrification rate appeared $19.2mg\;NO_3{^{-}}N/g\;MLVSS{\cdot}hr$, and through the sewage sludge treated with electrolysis, it can be applied to anaerobic digestion and denitrification process by increasing biodegradation.

pH Effect at Thermophilic Solubilization Pretreatment of Food Waste in Two Phase Anaerobic Digestion (2상 혐기성 소화에서 음식물쓰레기의 고온 가용화 전처리 pH 영향)

  • Lee, Won-Soo;Kang, Young-Jun;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.452-458
    • /
    • 2016
  • The study on pH control at the themophilic solubilization (pretreatment process) was investigated in order to improve the methane gas production of two phase anaerobic digestion of food waste. From a batch experiment, it was observed that the solubilization efficiency was increased from 26.2% to 47.1% and 55.6% by the pH increament from $4.20{\pm}0.40$ (without pH control) to $7.00{\pm}0.50$, and $12.00{\pm}0.50$, respectively. However there was immaterial increase (8.5%) in solubilization efficiency when the pH was increased from $7.00{\pm}0.50$ to $12.00{\pm}0.50$. The two phase anaerobic digestion system was operated for laboratory scale experiment under the solubilization condition of pH $4.20{\pm}0.40$ (Run1) and $7.00{\pm}0.50$ (Run2). Higher soluble chemical oxygen demand (SCOD) and total volatile fatty acid (TVFA) concentration were observed in Run2 throughout the system resulted by the solubilization effect at the pH $7.00{\pm}0.50$. The TVFA concentration in acidogenic reactor was 18.4 g/L which was 1.8 times higher than the result of Run1. Consequently the methane gas production was enhanced to 0.333 L/g VS in the methanogenic reactor, which is 18% higher than the result (0.282 L/g VS) of Run1.

Kinetics of Anaerobic Digestion: A Comparative Study on Mesophilic and Thermophilic Anaerobic Digestion (혐기성소화(嫌氣性消化)의 동력학(動力學) : 중온(中溫) 및 고온혐기성소화(高溫嫌氣性消化)의 비교연구(比較研究))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 1987
  • Comprehensive laboratory experiments including digestion failures were conducted to identify differences between mesophilic and thermophilic digestion. Critical HRT was found to be near 10days for mesophilic and near 5days for thermophilic digestion. Inhibition occurred rapidly when operated below critical HRT. However, inhibition at mesophilic condition was much greater than that at thermophilic condition. Although digester performances were similar above critical HRT of mesophilic digestion, thermophilic digestion was considerably advantageous below this HRT. Thermophilic digestion produced smaller amount of sludges which had significantly higher settling velocity and lower specific resistance. Reaction rates also clearly demonstrated temperature and HRT effects on digestion. It was also found that gas production rates increased linearly with increasing reaction rates regardless of temperature and their relationships were almost identical at mesophilic and thermophilic temperature.

  • PDF

Simulation on Long-term Operation of an Anaerobic Bioreactor for Korean Food Wastes

  • Choi, Dong Won;Lee, Woo Gi;Lim, Seong Jin;Kim, Byung Jin;Chang, Ho Nam;Chang, Seung Teak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of Solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5C in winter to 25C in Summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation .

Development of Digestion Gas Production and Dewatering Cake Management in WWTP by Using Data Mining Technology (데이터 마이닝 기법을 활용한 하수처리장 소화가스 예측 및 탈수 케이크 관리 기법 개발)

  • Kim, Dongkwan;Kim, Hyosoo;Kim, Yejin;Kim, Minsoo;Piao, Wenhua;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The purpose of this study is to suggest the effective operation method by developing prediction model for the gas production rate, an indicator of the effectiveness of anaerobic digestion tank, using data mining. At the result, gas production estimate model is developed by using ANN within 10% error. It is expected to help operation of anaerobic digestion by suggesting selected parameter. Meanwhile case based reasoning is applied to develop dewatering cake management technology. Case based reasoning uses the most similar examples of past when a new problem occurs, therefore in this study, management measures are developed that proposes dewatering cake minimization with the minimum change by applying the case based reasoning to sludge disposal process.