• Title/Summary/Keyword: Anaerobic digestion gas

Search Result 151, Processing Time 0.032 seconds

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.

Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor (고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화)

  • 허준무;박종안;이종화;손부순;장봉기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells (연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술)

  • BAE, MINSOO;LEE, JONGYEON;LEE, JONGGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Bio-gas Production from Nemopilema nomurai Using Anaerobic Digestion (혐기성 소화를 이용한 노무라입깃 해파리로부터 바이오 가스 생산)

  • Kim, Ji-Youn;Lee, Sung-Mok;Kim, Jong-Hun;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • The recent bloom of a very large jellyfish Nemopilema nomurai has caused a danger to sea fishery and sea bathers. Presently, Nemopilema nomurai is thrown away through a separator system in the sea. The objective of this work was to produce bio-gas from Nemopilema nomurai by using anaerobic digestion. The bio-gas includes the hydrogen or the methane gases. It relates that Nemopilema nomurai is effectually changed into the renewable energy. When the jellyfish biomass was used as an organic carbon source the bio-gases were evolved. The aim of this study was to determine the optimal conditions for hydrogen and methane gases production according to the substrate concentrations of Nemopilema nomurai, optimal culture condition and the sludge-pretreatment without pH control. The optimal culture condition was found to be $35^{\circ}C$ and the heat-treatments of jellyfish was done at $120^{\circ}C$ for 30 min. The production rate of hydrogen and methane gas were found to be 8.8 mL/L/h, 37.2 mL/L/h from 1.5 g of dry Nemopilema nomurai.

A study on Enhanced Efficiencies of Methane Fermented Alcohol Wastewater Treatment by Supplement of Nutrients (영양물질 주입에 의한 메탄 발효 주정폐액의 효율증진에 관한 연구)

  • 안승구;이인학;진서형
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.40-49
    • /
    • 1997
  • In Korea, naked barley and tapioca are main raw materials for the production of fermentation ethyl alcohol, and one million drums bf 95% fermentation ethyl alcohol is produced per year by use of them. Stillage of alcoholic fermentation is mostly digested by methane fermentation process, and methane gas occured if methane fermentation process is recovered and mixed with fuel to decrease 25-30% for total fuel used in factories. In the anaerobic digestion process of naked barley stillage, supplement of nutrients is necessary to slove the problems caused by inhibitory materials contained if stillage and deficiency of nutrients. Therefore, the objective of this study was to examine why the anaerobic digesters using the naked barley distillery wastewater have shown the poor digestability frequently and how to control it. As the poor digestion was supposed to be occurred by the lack of iron as trace nutrient, the experiments were carried out to find out the optimum dosage and the way of addition of iron and to assess the quantitative evaluation of the type of iron in digesters. Initially, bottle test as batch digesters and lab-scaled continuous flow digesters were used in order to determine the digestion characteristics with tapioca and naked barley distillery wastewater. According to the results of batch tests, the poor digestion was caused by volatile fatty acids and could be improved by adding of calcium. The activity of the methanogenic bacteria were increased remarkably when the iron was added to the digester in the form of mixture with substrates.

  • PDF

Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion (전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향)

  • Kim, Dong-Jin;Kim, Hye-Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • Anaerobic digestion has been widely used for the treatment of sludge, which is generated from the municipal and industrial wastewater treatment, for its volume reduction and methane production. Many researches on sludge pre-treatment have been carried out in order to enhance the performance of anaerobic digestion by increasing the hydrolysis of sludge which is the rate limiting step of anaerobic digestion. In this study, the effect of pre-treatment on sludge hydrolysis(solubilization), methane production and sludge reduction by anaerobic digestion after thermal, ultrasonic, and thermal-alkali sludge treatment were compared. Thermal-alkali treatment showed 67 and 70% solubilization with municipal and industrial wastewater sludge, respectively, while ultrasonic treatment and thermal treatment gave similar solubilization efficiency of 40% or more. Methane content of the anaerobic digestion gas reached 45~70% and pretreated sludge gave higher methane content than the control sludge. Methane production of thermal, ultrasonic, and thermal-alkali pre-treatment gave 2.6, 2.7, 3.5 times of municipal control sludge and 3.5, 4.1, 4.2 times of industrial control sludge, respectively. Sludge reduction of pre-treated sludge after anaerobic digestion gave 5~19% point higher than that of control sludge, and thermal-alkali treatment showed higher reduction efficiency than thermal and ultrasonic treatment. The results proved that pre-treatment contributed significantly not only for the methane production but also for the cost reduction of sludge treatment and disposal, and thermal-alkali treatment gave the best performance for the sludge treatment.

Feasibility Studies on Anaerobic Sequencing Batch Retractor for Sludge Treatment

  • Duk Chang;Joo
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1992
  • Digestion of a municipal wastewater sludge by the anaerobic sequencing batch reactor (ASBR) was investigated to evaluate the performance of the ASBR process at a critical condition of high-solids-content fined. The reactors were operated at an HRT of 10 days with an equivalent loading rate of 0.8-1.5 gVS/L/d at 35$^{\circ}C$ The main conclusions drawn from this study were as follows: 1. Digestion of a municipal wastewater sludge was possible using the ASBR in spite of high concentration of settleable solids in the sludge. The ASBRS with 3- and 4-day cycle period showed almost identical high digestion performances. 2. No adverse effect on digestion stability was observed In the ASBRS in spite of withdrawal and replenishment of 30% or 40% of liquid contents. A conventional anaerobic digester could be easily converted to the ASBR without any stability problem. 3. Flotation thickening occurred in thicken step of the ASBRS throughout steady state, and floating bed volume at the end of thicken period occupied about 70% of the working volume of the reactor Efficiency of flotation thickening in the ASBRS could be comparable to that of additional gravity thickening of a completely mixed digester. 4. Solids were accumulated rapidly in the ASBR during start-up period. Solids concentrations in the ASBRS were 2.6 times higher than that in the completely mixed control reactor at steady state. Dehydrogenase activity had a strong correlation with the solids concentration. Dehydrogenase activity of the digested flu형e in the ASBR was 2.9 times higher than that of the flu형e in the control reactor, and about 25 times higher than that of the subnatant in the ASBR. 5. Remarkable increase in equivalent gas production of 52% was observed at the ASBRS compared with the control reactor in spite of similar quality of clarified effluent from the ASBRS and control reactor. The increase in gas production from the ASBRS was believed to be combined results of accumulation of microorganisms, higher driving force applied, and additional long-term degradation of organics continuously accumulated.

  • PDF

A Feasibility Study on Biogas Production from Anaerobic Digestion of Straw (볏짚의 혐기성소화시 소화가스 생성에 관한 연구)

  • Park, Jong-An;Hur, Joon-Moo
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.29-35
    • /
    • 1999
  • Quantity and composition of biogas from semi-continuous anaerobic digestion of straw were obtained experimentally in laboratory scale digesters fed with 1 liter of 5% straw-water mixture and maintained at 35$^{\circ}C$. Experiments were carried out for hydraulic retention time(HRT) of 8, 10 and 15days, respectively. The amount and composition of biogas produced were measured until steady-state was achieved for each run. The amount of biogas and methane percent go through a maximum and decrease continuously towards the steady-state after three times operation of hydraulic retention time(HRT). Methane gas production rates at steady-state increase with the increasing of HRT. Biogas production of 0.45 liter/day with 25% methane, 0.42 liter/day with 33.7% methane and 0.492 liter/day with 31.7% methane were obtained for 8, 10 and 15days of HRT, respectively. The high proportion of soluble carbohydrates present in straw makes the volatile fatty acids to build up within the digester causing a drop in pH that inhibits digestion. Regular control of pH is therefore necessary by adding alkalinity. Reductions in COD increase with increase in HRT. The stratification of plant material within the digester is different from that of manure, and modifications in design and operation of digesters may be necessary if they are fed with plant matter.

  • PDF

Treatment of Tapioca Starch Wastewater By Anaerobic Digestion Coupled With Membrane Separation Process (혐기성 소화 및 막분리에 의한 Tapioca 전분의 폐수처리)

  • ;S. Vigneswaran
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1991
  • This study thus looks into two treatment processess : i) Anaerobic digester coupled with hollow fibre membrane unit. Treatment of starch waste with anaerobic digester-membrane system was studied. $0.17\m^2$ area of hollow fibre membrane unit of known pore size was immersed into laboratory-scale anaerobic digestion system. The pore size of membrane was varied from 0.03 to $\0.15mu$m. The hydraulic retention time of anaerobic digester was varied from 1.5 to 10 days. The effect of hydraulic retention time on treatment efficiency was significant while effect of membrane size was not significant. The gas production was about 0.74㎥/kg COD treated. The COD removal efficient was about 80-95% depending on the hydraulic retention time. ii ) Crossflow ultrafiltration as post treatment to anaerobic filter. The effluent from anaerobic filter, which had a total COD in the range of 4,500-5,200 mg/L was treated by crossflow ultrafiltration units. The study conducted with different membrane pore size indicated that membrace with 1,000,000 molecular weight cut-off size gave a higher COD removal efficiency in the range of 83-87% while giving a study flux of $120-130 L/\m^2$.h. A study was conducted to see the long term clogging effect of membrane also.

  • PDF