• Title/Summary/Keyword: Anaerobic digestion gas

Search Result 151, Processing Time 0.022 seconds

The Bio Gasification technology of organic waste using vertical multistage anaerobic digester (다단 수직형 혐기성 소화조를 이용한 유기성 폐기물 바이오가스화 기술)

  • Lee, Jong Hak;Eum, Young-Kyoung;Kim, Youngnoh
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • Processing of organic waste is converted to anaerobic digestion for environmental friendly and sustainable energy recovery and reduction of sludge. In this study, ECOPAD (ECOdays' Plug-flow Anaerobic Digster)design for a high solids content and high organic matter content were used to investigate an applicability and efficiency of food waste treatment and poultry wastewater treatment. Case-by-case analysis of treatment efficiency of ECOPAD using food waste of city "P" and city "S". Volatile Solids basis organic removal efficiency of city "P" and city "S" was 84% and 88% respectively. And, the content of methane (P City: 70%, S City: 71%) was measured similarly. In the case of poultry waste bio-gas production was measured to $1.6Nm^3/kg$-VSrem, and methane content was measured to 69%.

A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR (혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구)

  • 김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

Characteristics of methane production for treatment of brewery wastewater using anaerobic filter (혐기성 필터를 이용한 맥주 폐수 처리에서 메탄 생산 특성)

  • Choi, Young-Ki;Choi, Suk Soon;Chung, Hyung Keun;Jeong, Tae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.29-34
    • /
    • 2011
  • In the present work, the anaerobic filter was used to treat the high concentration of organic wastewater which was produced in the beer production process. During the whole operation periods, wastewater treatment with methane production was effectively performed. The average removal efficiencies of BOD, CODcr, SS, TN and TP were 61.4, 60.9, 31.4, 70.7 and 70.0 %, respectively. Also, methane content in the total gas and methane production amount were 68.8 % and $0.08{\sim}0.77m^3CH_4/kgCOD$, respectively. As a consequence, the practical anaerobic digestion technology developed in this study showed a feasibility of an effective method to treat brewery wastewater with enhancing the methane productivity.

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

Startup of Microbial Electrolysis Cells with different mixing ratio of Anaerobic Digested Sludge and Buffer solution (혐기성소화 슬러지 비율에 따른 미생물전기분해전지의 식종 특성)

  • Song, Geunwuk;Baek, Yunjeong;Seo, Hwijin;Jang, Hae-Nam;Chung, Jae Woo;Lee, Myoung-Eun;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • In this study, the influence of anaerobic digested sludge and 50 mM PBS (phosphate buffer solution) mixing ratio (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7) on hydrogen production and inoculation period were examined. MECs were operated in fed-batch mode with an applied voltage of 0.9 V. As a result, in the 1:1 mixing ratio reactor, 9.8-20.9 mL of hydrogen was produced with the highest hydrogen content of 66.8-79.6%. Hydrogen gas production and power density increased from after 12 days of inoculation for the 1:1 mixing ratio reactor. In case of 1:2, 1:3 and 1:4 mixing ratio reactor, the hydrogen gas production was 3.7-7.1 mL and the hydrogen gas content was 5.8-65.8%. The hydrogen gas yield in 1:5, 1:6 and 1:7 ratio reactors, was 0.50-0.69 mL and hydrogen content range was 1.8-7.1%. The mixing ratio was found to be suitable for hydrogen production and inoculation period by mixing ratio up to 1:4.

Study on the Treatability of High-Concetration Wastewater by ABBR (ASBR에 의한 고농도폐수의 혐기성처리 연구)

  • 김종찬;김요용;김세진;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1995
  • In the treatment of wastewater or sewage plant sludge with high solid concentration, high rate digestion process in which heating and mixing occur at a time is mainly used, and in the case of wastewater containing solid matter below 1000mg/ℓ the recently developed AF or UASB is developed Recently and commonly utilized. But these processes have weakpoints such as clogging of packing media and need of long period of trial run after microorganism granulation. In this point of view, there are active researches on the ASBR( anaerobic sequence batch reaction ) that is capable of treating of organic matter with reactor that has no packing materials and controlling the inflow time, reaction time sedimentation time and outflow time by time control without loss of microorganisms. The objectives of this study are to evaluate the efficiency of ASBR process according to the reaction time, change of treated water quality and gas output rate in the treatment of wheat plant wastewater.

  • PDF

A Heuristic for Sequencing and Scheduling of Multiple Feedstock Biogas Production Systems (다수의 Feedstock을 이용하는 메탄가스 생산시스템의 일정계획에 관한 발견적 기법)

  • Gim, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.1
    • /
    • pp.155-164
    • /
    • 1996
  • Biomass to methane via anaerobic digestion conversion is a good supply method of substitutable energy resources. The economic viability of this technology is contingent upon managing the production facilities in a cost effective manner. The problem is to determine the batch production sequence as well as the batch residence times in the digester so as to maximize total gas production over a given planning horizon. The problem is difficult to solve since the batch sequencing decisions and the batch residence time decisions cannot be isolated. This paper developes a heuristic algorithm which is based on a dynamic programming procedure for the multiple feedstock sequencing and scheduling biogas production systems and demonstrates to yield good results.

  • PDF

Dewatering and Settling Characteristics of Digested Sludge from the Anaerobic Sequencing Batch Reactor for Treatment of Nightsoil (혐기성 연속회분식 공정을 이용한 분뇨처리시 소화슬러지의 침강 및 탈수특성)

  • Lee, Jun-Geol;Jang, Duk;Heo, Jun-Mu;Son, Boo-Soon;Jang, Bong-Ki;Park, Jong-An
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.867-873
    • /
    • 1998
  • Laboratory study was conducted to provide basic data for operating anaerobic sequencing batch reactor(ASBR) process for treatment of nightsoil. The experiments were concerned with digestion characteristics, settleabiltity and dewaterability of digested sludge in ASBR system. Completely-mixed dally-fed control reactor without solid-liquid separation step was also operated to evaluate the baseline performance since the nature of nightsoil was changed with time. In all case, gas production from the ASBR shows 1.3 to 1.44 times higher than that from control, in spite of almost similar trend in organics removal. During thickening period, remarkable decrease in surface settling velocity was observed at the ASBRs compared with the control. In case of the ASBR run, flotation of mixed digested sludge was not occurred. Also, ultimate thickened volume of ASBRs increased 1.2~1.5 times compared with control. Dewaterability of digested sludge without conditioning decreased when the completely-mixed daily-fed reactor for ASBR run was converted to the ASBR. However, improvement of dewaterability of digested sludge from the ASBRs was observed as a result of addition of FeCl$_3$ to digested sludge for conditioning.

  • PDF

Sludge Solubilization using Microwave Irradiation in the Presence of Fe Powder

  • Yi, Min-Joo;Choi, Hyun-Kyung;Han, Ihn-Sup
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, microwave irradiation, which is reflected by metals, was used to reduce the amount of sewage sludge, and the results were used to verify solubilization efficiency and determine optimum operation conditions. Biogas production and methane content of the gas under optimized conditions were measured with the biochemical methane potential (BMP) test. The sludge was taken from a thickened sludge tank at J sewage treatment plant (JSTP) in Seoul, Korea. For the experiments, 50 mL of sludge was filled in vessels and the vessels were irradiated with the power of 500, 600, 700, and 800W for 2~5 min. In addition, Fe powder was added by 0.01, 0.05, and 0.1 g to compare the efficiency with and without Fe powder. The results confirmed that solubilization efficiency was higher in the presence of Fe powder. The optimum conditions of 0.01 g addition of Fe powder with 800W irradiation for 5 min, yielded nearly 22.95% higher solubilization efficiency than without Fe powder. The BMP tests were carried out using sludge obtained from the experiments carried out under the optimum conditions. As a result, sludge subjected by 800W with 0.01 g of Fe powder for 5 min displayed the highest level of gas production and methane content. Through this study, it could be confirmed that solubilization efficiency increased by addition of Fe powder.