• 제목/요약/키워드: Anaerobic bioreactor

검색결과 74건 처리시간 0.025초

Simulation on Long-term Operation of an Anaerobic Bioreactor for Korean Food Wastes

  • Choi, Dong Won;Lee, Woo Gi;Lim, Seong Jin;Kim, Byung Jin;Chang, Ho Nam;Chang, Seung Teak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권1호
    • /
    • pp.23-31
    • /
    • 2003
  • A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of Solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5C in winter to 25C in Summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation .

Application of upflow multi-layer bioreactor (UMBR) for domestic wastewater treatment in HCMC

  • Cao, Duc Hung;Nguyen, Ngoc Han;Nguyen, Phuoc Dan;Bui, Xuan Thanh;Kwon, J.C.;Shin, H.S.;Lee, E.T.
    • Membrane and Water Treatment
    • /
    • 제3권2호
    • /
    • pp.113-121
    • /
    • 2012
  • Up-flow multi-layer bioreactor (UMBR) is a hybrid system using dual sludge that consists of an up-flow multi-layer bioreactor as anaerobic/anoxic suspended growth microorganisms followed by an aeration tank. The UMBR acts as a primary settling tank, anaerobic/anoxic reactor, thickener which requires low energy due to mixing by up-flow stream. This study focused on using a pilot UMBR plant with capacity of 20-30 $m^3$/day for domestic wastewater in HCMC. HRTs of UMBR and aeration tank were 4.8 h and 7.2 h, respectively. The average MLSS of UMBR ranged from 10,000-13,600 mg/l SS. Internal recycle rate and sludge return were 200-300% and 150-200%, respectively. The results obtained from this study at flow rate of 20 $m^3$/day showed that removal of COD, SS, TKN, N-$NH_4$, T-N, and color were 91%, 87%, 86%, 80%, 91% and 91%, respectively.

음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구 (Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste)

  • 조찬휘;이병희
    • 유기물자원화
    • /
    • 제23권2호
    • /
    • pp.28-35
    • /
    • 2015
  • 본 연구에서는 학교 식당에서 배출되는 음식물류 폐기물을 준 회분식 액순환 건식 혐기성 소화를 이용해서 메탄가스를 생산하였다. 두 시스템이 운전되었는데, 각 시스템은 생물반응조와 액 저장조로 구성되었다. 각 생물반응조 바닥은 스크린이 설치되어 있어 2.5L의 분리된 액체는 액 저장조로 30분 동안 이송되고 이송이 끝나자마자 이송된 액은 반응조 상부로 투입된다. 이 같은 순환은 고농도의 VFAs를 가지는 액체를 반응조 상부로 공급하는 역할을 한다. 실험 초기에는 음식물류 폐기물/식종 미생물의 부피 비는 2:8이고 이는 9g VS/L의 유기물 부하로 나타낼 수 있다. 음식물류 폐기물 투입은 2주에 한번이었고, 평균 수분, 휘발물질, 회성분은 각각 65.91%, 32.73%과 1.36%로 파악되었다. 두 개의 고형물 부하가 연구되었는데, 각각 3.51g VS/d (System A)와 3.86g VS/d(System B)이다. 음식물류 폐기물 당 메탄 발생량은 각각 $6.30m^3CH_4/kgVS{\cdot}d$(System A)와 $4.94m^3CH_4/kgVS{\cdot}d$(System B)이다.

혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구 (A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR)

  • 김재우;장인용
    • 한국환경보건학회지
    • /
    • 제19권2호
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

중온 침출수 재순환 혐기성 소화 시스템을 이용한 음식물류 폐기물 처리 (The Treatment of Source Separated Food Waste by Mesophilic Anaerobic Digestion System with Leachate Recirculation)

  • 조찬휘;이병희;이용운
    • 유기물자원화
    • /
    • 제24권1호
    • /
    • pp.31-40
    • /
    • 2016
  • 본 연구에서는 침출수 재순환 시스템을 적용한 중온 혐기성소화를 이용하여 음식물류 폐기물을 분해하여 메탄가스를 생산하였다. 실험은 $36^{\circ}C$로 유지되는 항온수조 내에 생물반응조와 침출수 저장조로 구성된 2개의 동일한 시스템(System A, System B)을 사용하였고, 생물반응조 하단 30 mm위에는 스크린이 있어 고액분리를 하여 침출수 저장조로 침출수를 이송하였다. 침출수 재순환은 매일 수행하였으며, 침출수 재순환 시에는 생물반응조 하단에서 침출수 저장조로 2.5 L를 30분간 이송한 뒤 다시 침출수 저장조에서 생물반응조 상부로 2.5 L를 30분간 주입하였다. 주입된 음식물류 폐기물은 수집되기 전 한 번 세척하였으며 반응조에 주입되기 전에 $36^{\circ}C$로 온도를 올렸다. System A에 49.1 g VS, System B에 54.0 g VS을 2주 간격으로 투입하였다. 저해인자로 측정된 항목은 $NH_4{^+}-N$과 염도였으며, 두 가지 항목의 농도 모두 시스템에 끼친 영향은 없는 것으로 나타났다. System A는 112일간, System B는 140일 동안 운전하였는데, 각 시스템에서 인발된 슬러지는 없었다. 음식물류 폐기물의 혐기성 소화를 통한 평균 메탄 발생량은 System A의 경우 0.439 L $CH_4/g$ VS, System B의 경우 0.368 L $CH_4/g$ VS로 나타났다.

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

혐기성 고정상 생물반응기에서 담체의 종류에 따른 Biogas 생성 및 미생물 부착 특성에 관한 연구 (The Characteristics of Attached Biomass and Biogas Production in an Anaerobic Packed Bed Bioreactor with Several Carriers)

  • 안재동;강동수;장인용
    • 한국환경보건학회지
    • /
    • 제18권2호
    • /
    • pp.75-81
    • /
    • 1992
  • An experimental investigation has been carried out to evaluate the characteristics in wastewater treatment using an anaerobic packed bed bioreactor with ceramics, rubber sponge, soft stone A, and soft stone B as carrier. The results of the work have shown that soft stone A as a carrier was superior to other carriers in methane production, then the content of methane for soft stone A was about 70%. First of all, soft stone A had higher efficiency of the COD removal than the others in response of passing the operation, as well as it had a low volatile acid in reactor. In addition, the slope of methane production with respect to the removal of COD ($m^{3}CH_{4}$/kgCOD) was 0.58 for soft stone A. In biomass hold-up equation for each carriers, the equation of soft stone A was m$_{p}$=714 ($C_{o}/0.41+C_{o}$) and it was the largest in this experimented carriers. Based upon the results obtained, it is suggested that the major effective carrier in wastewater treatments within the packed bed bioreactor used in this experimental work by soft stone A.

  • PDF

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

혐기성 막 생물반응조를 이용한 하수처리의 최근 동향 (Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater)

  • 신중헌;배재호;김정환
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.529-545
    • /
    • 2013
  • With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.