• 제목/요약/키워드: Anaerobic Digestion Sludge

검색결과 230건 처리시간 0.024초

중온 혐기성 연속회분식 공정에 의한 도시하수슬러지의 소화가능성 평가 (Application of Anaerobic Sequencing Batch Reactor to Mesophilic Digestion of Municipal Sewage Sludge)

  • 허준무;장덕;정태학;손부순;박종안
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.9-19
    • /
    • 1998
  • Laboratory experiments were carried out to investigate the performance of anaerobic sequencing batch reactor(ASBR) for digestion of a municipal sludge. Each cycle of the ASBR comprised feeding, two-or three-day reaction, one-day thickening, and withdrawal. The reactors were operated at an HRT of 10days and 5days with an equivalent organic loading rate of 0.8-1.54 gVS/l/d, 1.81-3.56 gVS/l/d at 35$\circ$C, respectively. Solids accumulation was remarkable in the ASBR during start-up period, and directly affected by settleable solids in the feed sludge. Floatation thickening occured in the ASBRs, and Solids profiles at the end of thickening step dramatically changed at solid-liquid interface. Slight difference in solids concentrations was observed within thickened sludge bed. Efficiencies through floatation thickening were comparable to that of additional thickening of the completely mixed control reactor. Average solids concentrations in the ASBRs were 2.2-2.6 times higher than that in the control throughout the total operation period. The dehydrogenase activity had a strong correlation with the solids concentration. Organics removals based on clarified effluent of the ASBRs were consistently above 86%. Remarkable increase in equivalent gas production of 27-52% was observed at the ASBRs compared with the control though the control and ASBRs showed similiar effluent quality. Thus, digestion of a municipal sludge was possible using the ASBR in spite of high concentration of solids in the sludge.

  • PDF

Enhancing anaerobic digestion of vegetable waste and cellulose by bioaugmentation with rumen culture

  • Jo, Yeadam;Hwang, Kwanghyun;Lee, Changsoo
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.213-221
    • /
    • 2019
  • Anaerobic digestion (AD) has been widely used to valorize food waste (FW) because of its ability to convert organic carbon into $CH_4$ and $CO_2$. Korean FW has a high content of fruits and vegetables, and efficient hydrolysis of less biodegradable fibers is critical for its complete stabilization by AD. This study examined the digestates from different anaerobic digesters, namely Rs, Rr, and Rm, as the inocula for the AD of vegetable waste (VW) and cellulose (CL): Rs inoculated with anaerobic sludge from an AD plant, Rr inoculated with rumen fluid, and Rm inoculated with anaerobic sludge and augmented with rumen fluid. A total of six conditions ($3\;inocula{\times}2\;substrates$) were tested in serial subcultures. Biogas yield was higher in the runs inoculated with Rm than in the other runs for both VW (up to 1.10 L/g VS added) and CL (up to 1.05 L/g VS added), and so was biogas production rate. The inocula had different microbial community structures, and both substrate type and inoculum source had a significant effect on the formation and development of microbial community structures in the subcultures. The overall results suggest that the bioaugmentation with rumen microbial consortium has good potential to enhance the anaerobic biodegradability of VW, and thereby can help more efficiently digest high fiber-content Korean FW.

반응조 형상이 상향류 혐기성 슬러지 소화에 미치는 영향 (Effects of Reactor Configuration on Upflow Anaerobic Sludge Digestion)

  • 김대영;김희준;박기영;최영균;정태학
    • 상하수도학회지
    • /
    • 제17권4호
    • /
    • pp.550-558
    • /
    • 2003
  • Digestion of primary sludge was conducted to evaluate the effects of reactor configuration using UAD, CUAD, TPAD, and semi-continuos CSTR. Highest VSS reduction and gas production were obtained in CUAD at all HRT. More efficient digestion was accomplished in upflow digesters compared to TPAD and CSTR. Higher thickening of solids in reactor and longer solids retention were main reasons for the enhanced digestion in CUAD and UAD. Performance based on the SRT of CUAD was nearly identical to that of UAD. However, those of TPAD and CSTR were lower than that of CUAD. Particulate and soluble organics in upflow reactors were well adsorbed due to secreted extracellular polymeric substances from the sludge granules. These might result in close proximity of microorganisms and substrates and enhanced hydrolysis. Additionally, diverse anaerobic microorganisms and neutral pH in upflow reactor could induce more activity of hydrolytic enzymes and sludge granules might offer lower thermodynamic energy state. While, excessive mixing in CSTR could break conglomerates of enzymes and substrates into fine particles, which resulted in lowered hydrolysis. Low pH level in acid fermenter of TPAD lowered hydrolysis of the particulate substrates.

정유 공장에서 발생된 폐수 슬러지의 최적 감량화 방안 연구 (Study of optimal reduction plan for wastewater sludge generated from oil refinery)

  • 최재우;정종민;심나탈리아;이상협;박철희
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.395-406
    • /
    • 2010
  • In this study, anaerobic digestion, electro-oxidation and electro-fenton oxidation processes were investigated to reduce oily refinery sludge. Anaerobic digestion process was not suitable for oily activated sludge reduction because of characteristics itself and, as experimental results revealed, reduction efficiency was low for electro-oxidation process. However, 40% total suspended solid reduction of oily activated sludge was obtained by electro-fenton oxidation process, operating at pH=1, 0.5 A and $Fe^{2+}$:$H_2O_2$ ratio = 1:30. In addition, higher reduction efficiency was obtained as reaction time was increased (30, 60, 90, 120 min) despite of low $H_2O_2$ concentration. From the results, it has been investigated that electro-fenton oxidation is efficient process for oily activated sludge reduction.

고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화 (Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor)

  • 허준무;박종안;이종화;손부순;장봉기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

전기분해 전처리 슬러지의 혐기성 소화 및 질산염 제거효율 평가 (Evaluation of Anaerobic Fermentation and Nitrate Removal Efficiency of Sewage Sludge Pre-treated with Electrolysis)

  • 김재형;전혜연;박대원
    • 에너지공학
    • /
    • 제23권1호
    • /
    • pp.33-39
    • /
    • 2014
  • 본 연구에서는 하수슬러지의 소화가스 생산 효율향상을 위해 전기분해 처리방법을 수행하고 이를 소화가스 생산과 탈질실험 효과를 확인하였다. 전기분해 처리시간, 전류밀도가 증가함에 따라 가용화율은 증가하였으며 전극간격 4 mm에서 전류밀도 10 mA/cm2로 60분 처리 시 가용화율은 9.02%를 보였다. 이를 이용하여 BMP실험을 진행한 결과 0.49 L CH4/g VS의 메탄생산량을 보이며 대조군대비 88.4% 증가함을 보였다. 같은 조건으로 처리된 하수슬러지를 이용하여 탈질실험을 진행한 결과 $19.2mg\;NO_3{^{-}}N/g\;MLVSS{\cdot}hr$의 탈질율을 보였으며 이를 통해 전기분해 처리된 하수슬러지는 생분해성이 증대됨에 따라 혐기성소화와 탈질공정에도 적용이 가능한 것으로 확인되었다.

껍질 형태의 과일폐기물과 하수슬러지를 이용한 회분식 혐기 소화공정에서 메탄 생산 (Methane Production Using Peel-type Fruit Wastes and Sewage Sludge in Batch Anaerobic Digestion Process)

  • 정태영;이종학;정형근;차형준;최석순
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.542-546
    • /
    • 2009
  • 본 연구는 사과나 귤의 껍질류 과일 폐기물과 하수슬러지가 혼합된 유기성 폐기물을 이용한 회분식 혐기 분해공정에서 메탄 생산이 고찰되었다. 사과껍질 또는 귤껍질이 하수슬러지와 혼합된 기질로 사용되어졌을 때, 3 : 7의 혼합비로 운전한 것이 가장 높은 메탄 생산을 나타내었다. 그러나, 이 비율 이상에서는 사과와 귤 껍질이 함유된 유기산으로 인하여 혼합물의 pH가 8.0에서 4.5~4.7으로 감소하였으며, 결과적으로 메탄 생산이 낮아졌다. 이러한 실험 결과들은 사과, 귤 껍질과 하수슬러지의 혼합된 회분식 혐기 소화 공정에서 바이오에너지로서 메탄가스의 생산 시스템에 효과적으로 활용될 수 있을 것이다.

단상 고온 및 중온 혐기성 하수 슬러지의 소화 공정 비교 (Comparison of Single-stage Thermophilic and Mesophilic Anaerobic Sewage Sludge Digestion)

  • 장현민;최석순;하정협
    • 공업화학
    • /
    • 제27권5호
    • /
    • pp.532-536
    • /
    • 2016
  • 본 연구에서는 하수 슬러지를 대상으로 단상 고온($55^{\circ}C$)과 중온($35^{\circ}C$) 혐기성 소화조의 안정성, 고형물 제거 및 메탄생성을 관찰하였다. 실험 결과 별도의 pH 조절 없이 고온($R_{TAD}$, reactor of thermophilic anaerobic digestion) 및 중온 ($R_{MAD}$, reactor of mesophilic anaerobic digestion) 소화조 내 pH의 경우 혐기 소화 시 안정적인 미생물 활성을 나타낸다고 알려진 6.5-8.0 사이의 값을 소화 기간 내내 유지하는 것을 관찰할 수 있었다. 또한, total alkalinity (TA)의 경우 $R_{TAD}$$R_{MAD}$ 모두 3-4 g $CaCO_3/L$의 높은 값을 안정적으로 유지하였다. 고형물 제거의 경우 순응 기간 후 $R_{TAD}$에서 43.3%, $R_{MAD}$에서 33.6%의 VS 제거율을 보이며 $R_{TAD}$에서 약 10% 높은 VS 제거율은 제거율을 보였다. 유기산의 경우 $R_{TAD}$$R_{MAD}$에서 순응 기간 직후 검출되지 않았다. $R_{TAD}$$R_{MAD}$ 모두 순응 기간 후 안정적인 메탄 생성을 보였으며, $R_{TAD}$에서 $R_{MAD}$에 비해 31.4% 향상된 메탄 생성률이 관찰되었다($R_{TAD}$; 243 mL $CH_4/L/d$; $R_{MAD}$ : 185 mL $CH_4/L/d$). 반면, 두소화조 $R_{TAD}$$R_{MAD}$에서의 메탄 수율은 유사한 값을 보였다.

유기성 폐기물의 혐기성 소화효율 향상을 위한 열가용화 하수슬러지의 통합소화 (Integrated Digestion of Thermal Solubilized Sewage Sludge to Improve Anaerobic Digestion Efficiency of Organic Waste)

  • 오경수;황정기;송영주;김민지;박준규;박대원
    • 한국물환경학회지
    • /
    • 제38권2호
    • /
    • pp.95-102
    • /
    • 2022
  • Studies for improving the efficiency of the traditional anaerobic digestion process are being actively conducted. To improve anaerobic digestion efficiency, this study tried to derive the optimal pretreatment conditions and mixing conditions by integrating the heat solubilization pretreatment of sewage sludge, livestock manure, and food waste. The soluble chemical oxygen demand (SCOD) increase rate of sewage sludge before and after heat solubilization pretreatment showed an increased rate of 224.7% compared to the control group at 170℃ and 25 min and showed the most stable increase rate. As a result of the biomethane potential test of sewage sludge before and after heat solubilization pretreatment, the total chemical oxygen demand (TCOD) and SCOD removal rates increased as the heat solubilization temperature increased, but did not increase further at temperatures above 170℃. In the case of methane generation, there was no significant change in the cumulative methane generation from 0.134 to 0.203 Sm3-CH4/kg-COD at 170℃ for 15 min. As a result of the integrated digestion of organic waste, the experimental condition in which 25% of the sewage sludge, 50% of the food waste, and 25% of the livestock manure were mixed showed the highest methane production of 0.3015 m3-CH4/kg-COD, confirming that it was the optimal mixing ratio condition. In addition, under experimental conditions mixed with all three substrates, M4 conditions mixed with 25% sewage sludge, 50% food waste, and 25% livestock manure showed the highest methane generation at 0.2692 Sm3-CH4/kg-COD.

UASB를 이용한 음폐수의 Biogas 자원화 (Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket))

  • 민부기;이창현;김재용
    • 공업화학
    • /
    • 제23권1호
    • /
    • pp.28-34
    • /
    • 2012
  • 본 연구에서는 UASB 반응조를 이용하여 음폐수 탈리액을 원료로 하여 중온소화($35{\pm}0.5^{\circ}C$)와 고온소화($55{\pm}0.5^{\circ}C$)법을 통한 운전을 실시하였다. 20일 동안은 중온소화로 운전을 하면서 5일 간격으로 유출수 재순환 비를 단계적으로 변화시켰다. 고온소화 역시 중온소화와 마찬가지 조건으로 운전을 실시하였다. 실험결과 중온소화 시 유기물제거율은 90% 이상, 메탄수율은 약 66~70%로 나타났다. 고온소화 시 유기물제거율은 80% 이상, 메탄수율은 약 62~68%로 나타났다. 또한, 유출수 반송을 3Q 이상으로 반송하여 운전할 경우 경제적이며 안정적인 운전을 할 수 있었다.