• Title/Summary/Keyword: Anaerobic Bioreactor

Search Result 73, Processing Time 0.023 seconds

Simulation on Long-term Operation of an Anaerobic Bioreactor for Korean Food Wastes

  • Choi, Dong Won;Lee, Woo Gi;Lim, Seong Jin;Kim, Byung Jin;Chang, Ho Nam;Chang, Seung Teak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of Solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5C in winter to 25C in Summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation .

Application of upflow multi-layer bioreactor (UMBR) for domestic wastewater treatment in HCMC

  • Cao, Duc Hung;Nguyen, Ngoc Han;Nguyen, Phuoc Dan;Bui, Xuan Thanh;Kwon, J.C.;Shin, H.S.;Lee, E.T.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Up-flow multi-layer bioreactor (UMBR) is a hybrid system using dual sludge that consists of an up-flow multi-layer bioreactor as anaerobic/anoxic suspended growth microorganisms followed by an aeration tank. The UMBR acts as a primary settling tank, anaerobic/anoxic reactor, thickener which requires low energy due to mixing by up-flow stream. This study focused on using a pilot UMBR plant with capacity of 20-30 $m^3$/day for domestic wastewater in HCMC. HRTs of UMBR and aeration tank were 4.8 h and 7.2 h, respectively. The average MLSS of UMBR ranged from 10,000-13,600 mg/l SS. Internal recycle rate and sludge return were 200-300% and 150-200%, respectively. The results obtained from this study at flow rate of 20 $m^3$/day showed that removal of COD, SS, TKN, N-$NH_4$, T-N, and color were 91%, 87%, 86%, 80%, 91% and 91%, respectively.

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR (혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구)

  • 김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

The Treatment of Source Separated Food Waste by Mesophilic Anaerobic Digestion System with Leachate Recirculation (중온 침출수 재순환 혐기성 소화 시스템을 이용한 음식물류 폐기물 처리)

  • Cho, Chan-Hui;Lee, Byonghi;Lee, Yong-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • In this study, mesophilic anaerobic digestion of source separated food waste was carried out by leachate recirculation system and methane gas was produced. Two systems - system A and B were fabricated and placed within water bath to maintain $36^{\circ}C$. Each system was comprised of an anaerobic bioreactor and a leachate tank. Leachate in bioreactor was separated through the screen located at 30 mm above the bottom and a pump was installed to transfer collected leachate to the leachate tank. Everyday, 2.5 L of the leachate was pumped from the bioreactor to the leachate tank for 30 min and transferred leachate was pumped back to the top of the bioreactor for 30min, sequentially. Source separated food waste used for this experiment was washed by water before transferring to the laboratory. Transferred food waste was warmed to $36^{\circ}C$ before being fed to bioreactors. System A was fed to 49.1 g VS (Volatile Solids) and System B was fed to 54.0 g VS at every two weeks, respectively. $NH_4{^+}-N$ and salinity were monitored to see the inhibition toward anaerobic bioreaction and it was found that concentrations of these materials were not high enough to affect the bioreaction. Although the food waste was fed biweekly for 112 days and 140 days at system A and B, respectively, there was no sludge withdrawal from each system. Average methane productions rates were 0.439 L $CH_4/g$ VS and 0.368 L $CH_4/g$ VS for system A and B, respectively.

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

The Characteristics of Attached Biomass and Biogas Production in an Anaerobic Packed Bed Bioreactor with Several Carriers (혐기성 고정상 생물반응기에서 담체의 종류에 따른 Biogas 생성 및 미생물 부착 특성에 관한 연구)

  • 안재동;강동수;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 1992
  • An experimental investigation has been carried out to evaluate the characteristics in wastewater treatment using an anaerobic packed bed bioreactor with ceramics, rubber sponge, soft stone A, and soft stone B as carrier. The results of the work have shown that soft stone A as a carrier was superior to other carriers in methane production, then the content of methane for soft stone A was about 70%. First of all, soft stone A had higher efficiency of the COD removal than the others in response of passing the operation, as well as it had a low volatile acid in reactor. In addition, the slope of methane production with respect to the removal of COD ($m^{3}CH_{4}$/kgCOD) was 0.58 for soft stone A. In biomass hold-up equation for each carriers, the equation of soft stone A was m$_{p}$=714 ($C_{o}/0.41+C_{o}$) and it was the largest in this experimented carriers. Based upon the results obtained, it is suggested that the major effective carrier in wastewater treatments within the packed bed bioreactor used in this experimental work by soft stone A.

  • PDF

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater (혐기성 막 생물반응조를 이용한 하수처리의 최근 동향)

  • Shin, Chung-Heon;Bae, Jae-Ho;Kim, Jeong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.529-545
    • /
    • 2013
  • With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.