• 제목/요약/키워드: An oil pressure

검색결과 636건 처리시간 0.029초

APPLICATION OF 3D TERRAIN MODEL FOR INDUSTRY DISASTER ASSESSMENT

  • Kim, Hyung-Seok;Cho, Hyoung-Ki;Chang, Eun-Mi;Kim, In-Hyun;Kim, In-Won
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.3-5
    • /
    • 2008
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmental description of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapour Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapour Explosion), Fireball and so on, among them, we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

유압식 엘리베이터 에너지 저감장치의 성능특성에 관한 연구 (A Study on the Performance Characteristics of an Energy Saving Unit in a Hydraulic Elevator)

  • 조인성
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.2588-2595
    • /
    • 2013
  • 기존의 유압식 엘리베이터에서 엘리베이터 카의 하강행정 동안 손실 되는 유압 에너지를 회수하여 재사용하기 위하여 개발한 유압식 엘리베이터용 하이브리드 형 에너지 저감 장치에 대한 성능 특성에 관하여 연구하였다. 회수된 에너지는 축전지에 저장하여 재사용할 수 있도록 구성되어 있으며, 엘리베이터의 구동 조건에 따른 에너지 저감장치의 출력 특성, 효율 및 에너지 회수율 등에 관하여 실험을 통하여 규명하고자 하였다. 본 연구의 결과들은 하강행정 동안 버려지는 에너지의 회수율이 최대 약 54%로 에너지 저감 장치의 압력, 유량, 출력 전압과 전류, 효율 및 에너지 회수율 등과 같은 성능 특성들이 안정적이고 양호하다는 것을 보여주고 있으며, 본 연구를 통하여 유압식 엘리베이터의 에너지 저감 장치를 통하여 하강행정 동안 회수된 에너지를 재사용하데 매우 유용하며, 상용화 가능성이 충분하다는 것을 확인하였다.

The antihyperlipidemic effect of alginate-free residue from sea tangle in hyperlipidemic rats

  • Yim, Mi-Jin;Lee, Jeong Min;Choi, Grace;Cho, Soon-Yeong;Lee, Dae-Sung
    • Fisheries and Aquatic Sciences
    • /
    • 제22권11호
    • /
    • pp.27.1-27.6
    • /
    • 2019
  • Background: In order to assess the high value-added use of the alginate-free residue of sea tangle, an animal study was performed to evaluate the functional activities and key compounds present. In the animal study, sea tangle and the alginate-free residue demonstrated good anti-hyperlipidemic and anti-arteriosclerotic abilities. Results: The functional compounds in the alginate-free residue of the sea tangle were effectively extracted by supercritical fluid extraction (SFE). The optimum extraction temperature and pressure were 40 ℃ and 6500 psi (M1) in the SFE, a better method in comparison to the conditions of 70 ℃ and 4500 psi (M2), respectively. The anti-atherosclerotic effects of the alginate-free residue of sea tangle (M1, M2) were investigated in Sprague-Dawley rats treated with poloxamer 407, Triton WR 1339, corn oil, and a high-fat diet. The M1 fraction reduced the serum lipid levels with greater efficacy than the M2 fraction. In the hyperlipidemic rats, treatment with M1 decreased the serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels when compared to the levels in normal rats. Conclusion: Our results demonstrated that the alginate-free residue of sea tangle reduces serum TC, TG, and LDL-C. These results suggest that the alginate-free residue of sea tangle contains physiologically active components, such as fucosterol, that may exert beneficial effects in the prevention of atherosclerosis.

적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출 (Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera)

  • 권대주;정나라;김재열
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Pilot 규모 산성가스 제거공정 운전 특성 (Operation Characteristics of Pilot-scale Acid Gas Removal Process)

  • 이승종;류상오;정석우;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF

잉크 유화가 인쇄 모틀에 미치는 영향 (The Effects of Ink Emulsion on Printed Mottle)

  • 하영백;이용규;김창근;오성상;임종학;윤종태
    • 펄프종이기술
    • /
    • 제39권2호
    • /
    • pp.31-37
    • /
    • 2007
  • Lithography like off-set printing is processed using the repellent properties between water and oil, so all inks for off-printing must work with dampening solution(water). The dampening water may cause the emulsification of ink by the printing pressure in the printing nip. This study aimed to investigate the effect of emulsified inks on print mottle. The cyan ink was emulsified artificially with the different IPA(isopropyl alcohol) content in this study. We evaluated the print mottle by densitometer and image analysis method. The print mottle phenomenon was directly affected by IPA content. The emulsification of inks also had an influence on flow properties of inks and it increased ink transfer rate. It, however, caused low ink density. Moreover the emulsified inks were spreaded to around dots and cause the thinning density on the non-printing area like print mottle. The trial printing showed that the emulsified inks also cause scumming on the printing result with little mistake of adjusting dampening solution and mostly decreasing dot reproduction. We could, therefore, find out the obvious effect of emulsified inks on print mottle.

Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers

  • Kim, Sun-Hyung;Ji, Yeun-Sun;Lee, Eui-Seok;Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • 제21권3호
    • /
    • pp.289-295
    • /
    • 2016
  • Curcumin is a flavonoid found in the rhizome of the turmeric plant (Curcuma longa L.) and has recently attracted interest because it has numerous biological functions and therapeutic properties. In the present study, we attempted to incorporate curcumin into medium-chain triglyceride (MCT) nanoemulsions (0.15 wt% curcumin, 10 wt% MCT oil, and 10 wt% emulsifiers) with various emulsifiers [polyoxyethylene (20) sorbitan monolaurate (Tween-20), sorbitan monooleate (SM), and soy lecithin (SL)]. The physicochemical properties of the nanoemulsions including the Ostwald ripening stability were investigated. The initial droplet size was found to be 89.08 nm for the nanoemulsion with 10 wt% Tween-20 (control), and when Tween-20 was partially replaced with SM and SL, the size decreased: 73.43 nm with 4 wt% SM+6 wt% Tween-20 and 67.68 nm with 4 wt% SL+6 wt% Tween-20 (prepared at 15,000 psi). When the nanoemulsions were stored for 28 days at room temperature, the droplet size increased as the storage time increased. The largest increase was observed for the control nanoemulsion, followed by the 4 wt% SL+6 wt% Tween-20 and 4 wt% SM+6 wt% Tween-20 systems. The Turbiscan dispersion stability results strongly supported the relationship between droplet size and storage time. The time-dependent increase in droplet size was attributed to the Ostwald ripening phenomenon. Thus, the Ostwald ripening stability of curcumin-loaded MCT nanoemulsions with Tween-20 was considerably improved by partially replacing the Tween-20 with SM or SL. In addition, curcumin may have acted as an Ostwald ripening inhibitor.

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

복합전도성 세라믹 분리막의 탄화수소 직접분해에 의한 고순도 수소와 탄소 제조 (Development of Mixed Conducting Ceramic Membrane for High Purity Hydrogen and Carbon Production from Methane Direct Cracking)

  • 김지호;최덕균;김진호;조우석;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.649-655
    • /
    • 2011
  • Methane direct cracking can be utilized to produce $CO_x$ and $NO_x$-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. We present the results of a systematic study of methane direct cracking using a mixed conducting oxide, Y-doped $BaZrO_3$ ($BaZr_{0.85}Y_{0.15}O_3$), membrane. In this paper, dense $BaZr_{0.85}Y_{0.15}O_3$ membrane with disk shape was successfully sintered at $1400^{\circ}C$ with a relative density of more 93% via addition of 1 wt% ZnO. The ($BaZr_{0.85}Y_{0.15}O_3$) membrane is covered with Pd as catalyst for methane decomposition with an DC magnetron sputtering method. Reaction temperature was $800^{\circ}C$ and high purity methane as reactant was employed to membrane side with 1.5 bar pressure. The $H_2$ produced by the reaction was transported through mixed conducting oxide membrane to the outer side. In addition, it was observed that the carbon, by-product, after methane direct cracking was deposited on the Pd/ZnO-$BaZr_{0.85}Y_{0.15}O_3$ membrane. The produced carbon has a shape of sphere and nanosheet, and a particle size of 80 to 100 nm.

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.