DOI QR코드

DOI QR Code

The antihyperlipidemic effect of alginate-free residue from sea tangle in hyperlipidemic rats

  • Yim, Mi-Jin (National Marine Biodiversity Institute of Korea (MABIK)) ;
  • Lee, Jeong Min (National Marine Biodiversity Institute of Korea (MABIK)) ;
  • Choi, Grace (National Marine Biodiversity Institute of Korea (MABIK)) ;
  • Cho, Soon-Yeong (Department of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Lee, Dae-Sung (National Marine Biodiversity Institute of Korea (MABIK))
  • Received : 2019.09.27
  • Accepted : 2019.11.12
  • Published : 2019.11.30

Abstract

Background: In order to assess the high value-added use of the alginate-free residue of sea tangle, an animal study was performed to evaluate the functional activities and key compounds present. In the animal study, sea tangle and the alginate-free residue demonstrated good anti-hyperlipidemic and anti-arteriosclerotic abilities. Results: The functional compounds in the alginate-free residue of the sea tangle were effectively extracted by supercritical fluid extraction (SFE). The optimum extraction temperature and pressure were 40 ℃ and 6500 psi (M1) in the SFE, a better method in comparison to the conditions of 70 ℃ and 4500 psi (M2), respectively. The anti-atherosclerotic effects of the alginate-free residue of sea tangle (M1, M2) were investigated in Sprague-Dawley rats treated with poloxamer 407, Triton WR 1339, corn oil, and a high-fat diet. The M1 fraction reduced the serum lipid levels with greater efficacy than the M2 fraction. In the hyperlipidemic rats, treatment with M1 decreased the serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels when compared to the levels in normal rats. Conclusion: Our results demonstrated that the alginate-free residue of sea tangle reduces serum TC, TG, and LDL-C. These results suggest that the alginate-free residue of sea tangle contains physiologically active components, such as fucosterol, that may exert beneficial effects in the prevention of atherosclerosis.

Keywords

References

  1. Ara J, Sultana V, Qasim R, Ahmad VU. Hypolipidemic activity of seaweed from Karachi Coast. Phytother Res. 2002;16:479-83. https://doi.org/10.1002/ptr.909
  2. Aviram M. Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis. 1993;98:1-9. https://doi.org/10.1016/0021-9150(93)90217-I
  3. Duhault J, Boulanger M, Beregi L, Sicot N, Bouvier F. A new type of hyperlipidemic agent comparative assay in rats. Atherosclerosis. 1976;23:63-72. https://doi.org/10.1016/0021-9150(76)90118-0
  4. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  5. Friedwald WT, Levy RL, Fedreicson DS. Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma, without was of the preparative ultracentrifuge. Clin Chem. 1972;18:499-506. https://doi.org/10.1093/clinchem/18.6.499
  6. Ghule BV, Ghante MH, Saoji AN, Yeole PG. Hypolipidemic and antihyperlipidemic effects of Lagenaria siceraria Stand. Fruit extracts. Indian J Exp Biol. 2006;44:905-9.
  7. Ghule BV, Ghante MH, Saoji AN, Yeole PG. Antihyperlipidemic effect of the methanolic extract from Lagenaria siceraria Stand. Fruit in hyperlipidemic rats. J Ethnopharmacol. 2009;124:333-7. https://doi.org/10.1016/j.jep.2009.04.040
  8. Goldstein JL, Schroot HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease 11: genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544-68. https://doi.org/10.1172/JCI107332
  9. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91:7A-11A.
  10. Hideomi A, Makoto K, Daniel AC, Haruka O, Takaaki H. Effect of a seaweed mixture on serum lipid level and platelet aggregation in rats. Fish Sci. 2005;71:1160-6. https://doi.org/10.1111/j.1444-2906.2005.01076.x
  11. Jeong BY, Cho DM, Moon SK, Pyeun JH. Quality factors and functional components in the edible seaweeds - I. Distribution on n-3 fatty acids in 10 species of seaweeds by their habitats. J Korean Soc Food Sci Nutr. 1993;22:612-28.
  12. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res. 2010;30:49-56. https://doi.org/10.1016/j.nutres.2009.12.003
  13. Kusama H, Nishiyama M, Ikeda S. Pharmacological investigation of bezafibrate a hypolopodemic agent. Effects of bezafibrate on normal and experimental hyperlipidemia in rats. Nihon Yakurigaku Zasshi. 1998;92:175-80. https://doi.org/10.1254/fpj.92.175
  14. Lee S, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch Pharm Res. 2003;26:719-22. https://doi.org/10.1007/BF02976680
  15. Lee YS, Shin KH, Kim BK, Lee S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res. 2004;27:1120-2. https://doi.org/10.1007/BF02975115
  16. Lemhadri A, Hajji L, Michel JB, Eddouks MJ. Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats. J Ethnopharmacol. 2006;106:321-6. https://doi.org/10.1016/j.jep.2006.01.033
  17. Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med. 1995;332:512-21. https://doi.org/10.1056/NEJM199502233320807
  18. Megalli S, Aktan F, Davies NM, Roufogalis BD. Phytopreventative antihyperlipidemic effects of Gynostemma pentaphyllum in rats. J Pharm Pharm Sci. 2005;8:507-15.
  19. Nigon F, Serfaty-Lacrosniere C, Beucler I, Beucler I, Chauvois D, Neveu C, Giral P, Giral P, Chapman MJ, Bruckert E. Plant sterol-enriched margarine lowers plasma LDL in hyperlipidemic subjects with low cholesterol intake: effect of fibrate treatment. Clin Chem Lab Med. 2001;39:634-40. https://doi.org/10.1515/CCLM.2001.103
  20. Okai Y, Higashi-okai K, Nakamura S. Identification of heterogenous antimutagenic activities in the extract of edible brown seaweeds, Laminaria japonica (Makonbu) and Undaria pinnatifida (Wakame) by the umu gene expression system in Salmonella typhimurium (TA1535/pSK1002). Mutat Res. 1993;30:63-70. https://doi.org/10.1016/0027-5107(75)90337-1
  21. Park PJ, Kim EK, Lee SJ, Park SY, Kang DS, Jung BM, Kim KS, Je HY, Ahn CB. Protective effects against $H_2O_2$-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica). J Med Chem. 2009;12:159-66.
  22. Wang Y, Tang XX, Yang Z, Yu ZM. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaephyceae). J Environ Sci. 2006;18:543-51. https://doi.org/10.3321/j.issn:1001-0742.2006.03.022
  23. Wout ZG, Pec EA, Johnston TP. Biological activity of urease formulated in Poloxamer-407 after intraperitoneal injection in the rat. J Pharm Sci. 1992;81:626-30. https://doi.org/10.1002/jps.2600810707
  24. Yamada K, Tokunaga Y, Ikeda A, Ohkura K, Kaku-Ohkura S, Mamiya S, Lim BO, Tachibana H. Effect of dietary fiber on the lipid metabolism and immune function of aged Sprague-Dawley rats. Biosci Biotechnol Biochem. 2003;67:429-33. https://doi.org/10.1271/bbb.67.429