• Title/Summary/Keyword: Amyloid-${\beta}$ peptide

Search Result 117, Processing Time 0.041 seconds

Hispidin from the Mycelial Cultures of Phellinus linteus Inhibits A $\beta$-Secreatase(BACE1) and proyl endopeptidase

  • Park, In-Hye;Kim, Sang-In;Jeon, So-Young;Lee, Hee-Ju;Song, Kyung-Sik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.271.2-271.2
    • /
    • 2003
  • The ${\gamma}$- and ${\beta}$-secretase are one of the most important proteases, which cleave amyloid precursor protein (APP) into neurotoxic A${\beta}$ peptide in Azheimer's type dementia. In the course of screening for anti-dementia agents from natural products, the mycelial culture of mushroom Phellinus linteus showed potent inhibition againt ${\beta}$-secretase (BACE1). (omitted)

  • PDF

Effects of Cordyceps ophioglossoides extracts on the neuronal death and memory dificits

  • Park, Byung-Chul;Jin, Da-Qing;Beak, Sung-Mok;Lee, Jae-Sung;Choi, Hee-Don;Kim, Jung-Ae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.124.1-124.1
    • /
    • 2003
  • We investigated whether the mushroom extracts can protect neuronal death and ameliorate memory deficits in Alzheimer"s disease induced by $\beta$-amyloid peptide[A$\beta$(25-35)]. Cellular model of Alzheimer"s disease was produced by using SK-N-SH human neuronal cells treated with $A\beta$. Treatment with 40uM $A\beta$ for 48hours caused a 46% loss of cell viability. First, we examined the effects of 22 mushroom extracts on neuronal death using MTT assay. We found that 3 mushroom extracts increased viability of the cells from 46% to 87%. (omitted)

  • PDF

Onion Beverages Improve Amyloid β Peptide-Induced Cognitive Defects via Up-Regulation of Cholinergic Activity and Neuroprotection (양파(Allium cepa L.) 음료의 콜린성 활성 증가 및 뇌신경세포 보호로 인한 Amyloid β Peptide 유도에 대한 인지장애 개선 효과)

  • Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Ha, Jeong Su;Lee, Du Sang;Kim, Ah-Na;Choi, Sung-Gil;Lee, Uk;Heo, Ho Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1552-1563
    • /
    • 2016
  • To examine the cognitive function of onion (Allium cepa L.) beverages (odourless and fortified), we analyzed in vitro neuronal cell protection against $H_2O_2$-induced cytotoxicity and performed in vivo tests on amyloid beta ($A{\beta}$)-induced cognitive dysfunction. Cellular oxidative stress and cell viability were evaluated by DCF-DA assay and MTT assay. These results show that fortified beverage resulted in better neuronal cell protection than odourless beverage at lower concentration ($0{\sim}100{\mu}g/mL$). Fortified beverage also showed more excellent acetylcholinesterase (AChE) inhibitory activity ($IC_{50}$: 4.20 mg/mL) than odourless beverage. The cognitive functions of odourless beverage and fortified beverage in $A{\beta}$-induced neurotoxicity were assessed by Y-maze, passive avoidance, and Morris water maze tests. The results show improved cognitive function in both groups treated with beverages. After in vivo tests, cholinergic activities were determined based on AChE inhibition and acetylcholine levels, and antioxidant activities were measured as SOD, oxidized glutathione (GSH)/total GSH ratio, and MDA levels in mouse brain tissue. In a Q-TOF UPLC/MS system, main compounds were analyzed as follows: odourless beverage (five types of sugars and three types of phenolics) and fortified beverages (six types of phenolics and two types of steroidal saponins).

A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines (($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과)

  • Kim, Hae-Su;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

Ginsenoside (20S)Rg3 Ameliorates Synaptic and Memory Deficits in an Animal Model of Alzheimer's Disease

  • Kim, Tae-Wan
    • 한국약용작물학회:학술대회논문집
    • /
    • 2011.09a
    • /
    • pp.31-45
    • /
    • 2011
  • The amyloid ${\beta}$-peptide ($A{\beta}$), which originates from the proteolytic cleavage of amyloid precursor protein (APP), plays a central role in the pathogenesis of Alzheimer's disease (AD). Mounting evidence indicates that different species of $A{\beta}$, such as $A{\beta}$ oligomers and fibrils, may contribute to AD pathogenesis via distinct mechanisms at different stages of the disease. Importantly, elevation and accumulation of soluble $A{\beta}$ oligomers closely correlate with cognitive decline and/or disease progression in animal models of AD. In agreement with these studies, oligomers of $A{\beta}$ have been shown to directly affect synaptic plasticity, a neuronal process that is known to be essential for memory formation. Our previous studies showed that $A{\beta}$ induces the breakdown of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a phospholipid that regulates key aspects of neuronal function. PI(4,5)P2 breakdown was found to be a key step toward synaptic and memory dysfunction in a mouse model of AD. To this end, we seek to identify small molecules that could elevate the levels of PI(4,5)P2 and subsequently block $A{\beta}$ oligomer-induced breakdown of PI(4,5)P2 and synaptic dysfunction.. We found that (20S)Rg3, an active triterpene glycoside from heat-processed ginseng, serves as an agonist for phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha), which is a lipid kinase that mediates a rate-limiting step in PI(4,5)P2 synthesis. Consequently, (20S)Rg3 stimulates PI(4,5)P2 synthesis by directly stimulating the activity of PI4KIIalpha. Interestingly, treatment of a mouse model of AD with (20S)Rg3 leads to reversal of memory deficits. Our data suggest that the PI(4,5)P2-promoting effects of (20S)Rg3 may help mitigate the cognitive symptoms associated with AD.

  • PDF

Study of Anti-Alzheimer Activities from Scrophularia buergeriana Water Extract by Alzheimer's Protein APP-transgenic Fly (현삼(玄蔘) 수추출물(水抽出物)이 아밀로이드 전구단백질(前驅蛋白質)로 형질전환(形質轉換)된 초파리에 미치는 효과)

  • Kim, Jin-Woo;Lee, Soon-E;Lee, Jong-Hwa;Min, Sang-Jun;Kim, Tae-Heon;Lyu, Yeoung-Su;Kang, Hyung-Won
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.121-131
    • /
    • 2009
  • Objectives : From Scrophularia buergeriana water extract(SBW), has been used in vivo test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease(AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein(APP), including the amyloid-${\beta}$ peptide($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. Methods : Using drosophila APP model on APP-induced neuronal cytotoxicity, we demonstrated that SBW prevents neurotoxicity of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. We investigated the neuroprotective effects of SBW against the effects of oligomeric $A{\beta}$ and fly behaveior and life span by UAS-GRIM/APP-GAL within transgenic flies. Results and Conclusions : SBW repaired damage leading to the behaveior of APP-induced fly and delayed life span. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of SBW.

  • PDF

In silico Prediction and In vitro Screening of Biological Activities and Pharmacokinetics for the Major Compounds in Chong Myung Tang (가상 검색 및 시험관 시험을 이용한 총명탕 중 주성분들에 대한 약물작용 및 대사 예측)

  • Kwon, Young-Ee
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.463-468
    • /
    • 2007
  • Chong Myung Tang is consisted of three medicinal herbs (Acori Graminei Rhizoma, Polygalae Radix and Hoelen cum Radix). It has been used as a medicine for the purpose of learning and memory improvement. In this paper, Chong Myung Tang was screened the biological activities for Alzheimer's disease. The extract (70% ethanol) of Acari Graminei Rhizoma (1 mg/ml) showed that acetylcholinesterase (AChE) and amyloid beta ($A{\beta}$) peptide aggregation inhibitory potency are 43.1% and 76.5%, respectively. The extract of Polygalae Radix showed inhibitory activity against $A{\beta}_{1-42}$ peptide aggregation (51.5%). To predict the drug-likeness, oral absorption ability; blood-brain barrier (BBB) penetraion rate, mutagenecity and carcinogenicity; in silico screening was performed against 16 compounds in the three medicinal herbs. According to the results, all compounds have appropriate chemical structures as medicines. The six compounds in Acori Graminei Rhizoma and the five compounds in Hoelen cum Radix showed excellent oral absorption rate and BBB penetration rate. The four compounds in Polygalae Radix showed excellent oral absorption rate, but their BBB penetration was presented low rate. And, the extract of Hoelen cum Radix didn't show AChE and $A{\beta}_{1-42}$ peptide aggregation inhibitory activities in vitro. Therefore, their activity in brain may be other mechanism. According to all of the results, in silico prediction technology is convenient and effective to determine biological active compounds in medicinal herbs.

Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02 (LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과)

  • Kang, Hyung-Won;Kim, Sang-Tae;Son, Hyeong-Jin;Han, Pyeong-Leem;Cho, Hyoung-Kwon;Lee, Young-Jae;Lyu, Yeoung-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

Altered APP Carboxyl-Terminal Processing Under Ferrous Iron Treatment in PC12 Cells

  • Kim, Chi Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2013
  • Amyloid-${\beta}$ peptide ($A{\beta}$), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of $A{\beta}$ is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM $FeCl_2$, with 0.6 mM $FeCl_2$ treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM $FeCl_2$. APP-${\alpha}$-carboxyl terminal fragment (APP-${\alpha}$-CTF) associations with ADAM10 and APP-${\beta}$-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/ BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-${\alpha}/{\beta}$-CTF activation.

Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model

  • Kim, Ji Hyun;Wang, Qian;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.480-488
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is characterized by deficits in memory and cognitive functions. The accumulation of amyloid beta peptide ($A{\beta}$) and oxidative stress in the brain are the most common causes of AD. MATERIALS/METHODS: Caffeic acid (CA) is an active phenolic compound that has a variety of pharmacological actions. We studied the protective abilities of CA in an $A{\beta}_{25-35}$-injected AD mouse model. CA was administered at an oral dose of 10 or 50 mg/kg/day for 2 weeks. Behavioral tests including T-maze, object recognition, and Morris water maze were carried out to assess cognitive abilities. In addition, lipid peroxidation and nitric oxide (NO) production in the brain were measured to investigate the protective effect of CA in oxidative stress. RESULTS: In the T-maze and object recognition tests, novel route awareness and novel object recognition were improved by oral administration of CA compared with the $A{\beta}_{25-35}$-injected control group. These results indicate that administration of CA improved spatial cognitive and memory functions. The Morris water maze test showed that memory function was enhanced by administration of CA. In addition, CA inhibited lipid peroxidation and NO formation in the liver, kidney, and brain compared with the $A{\beta}_{25-35}$-injected control group. In particular, CA 50 mg/kg/day showed the stronger protective effect from cognitive impairment than CA 10 mg/kg/day. CONCLUSIONS: The present results suggest that CA improves $A{\beta}_{25-35}$-induced memory deficits and cognitive impairment through inhibition of lipid peroxidation and NO production.